Olá caros usuários.

Primeiramente, peço-lhes desculpas pelo ocorrido.

Fui fazer a atualização do software do fórum e, como se eu fosse um novato, cometi um erro crasso que derrubou o fórum.

Novato pois não havia feito o backup imediatamente antes.

O único backup disponível era do dia 21 pela manhã.

Ou seja, todas mensagens enviadas durante o dia 21 e dia 22 foram perdidas 😞 Incluindo os novos usuários registrados nesses dias.

Estou extremamente chateado com o ocorrido e peço a vocês, novamente, mil desculpas por uma mancada enorme dessas.

Grande abraço,
Prof. Caju

DemonstraçõesDemonstração - Teorema de Lamy

Fórum de coleânea das melhores demonstrações de teoremas de física.
Se você quiser postar uma demonstração, poste no fórum correspondente com o títuo "Demonstração Teorema X" e substitua com o nome do teorema/fórmula que você postou. Somente moderadores poderão mover sua mensagem para este fórum.
Avatar do usuário
Planck
5 - Mestre
Mensagens: 2863
Registrado em: 15 Fev 2019, 21:59
Última visita: 28-11-21
Agradeceu: 206 vezes
Agradeceram: 975 vezes
Abr 2020 13 19:01

Demonstração - Teorema de Lamy

Mensagem por Planck »

Na Estática, o Teorema de Lamy é uma equação que relaciona a intensidade de três forças, coplanares, concorrentes e não colineares, que fazem com que um corpo permaneça em equilíbrio, com os ângulos diretamente opostos às forças correspondentes.

Bernard Lamy foi um matemático e teólogo francês e membro da Congregação do Oratório. Veja mais sobre ele aqui.



Hipótese

Demonstre que 3 forças concorrentes que mantém um ponto [tex3]\text P[/tex3] em equilíbrio podem ser relacionadas por:

[tex3]{\color{NavyBlue} \boxed{_{_{{⠀}_{⠀}}} {\frac{\vec{v}}{\sen \alpha} = \frac{\vec u}{\sen \beta } = \frac{\vec w}{\sen \gamma}}_{_{{⠀}_{⠀}}}^{{⠀}^{⠀}} }}[/tex3]



Demonstração

Podemos montar o seguinte sistemas de forças atuantes sobre um ponto [tex3]\text P[/tex3]:

9EE81C97-F14C-4D9E-BE01-4D3C9648235E.png
9EE81C97-F14C-4D9E-BE01-4D3C9648235E.png (18.84 KiB) Exibido 6714 vezes

Ademais, podemos rearranjar os vetores e obter um triângulo de forças ou Triângulo de Simon Stevin (o mesmo da hidrostática). Desse modo, obtemos que:

9C3EF47A-0DF1-4E3E-981B-4A38280875F3.png
9C3EF47A-0DF1-4E3E-981B-4A38280875F3.png (20.41 KiB) Exibido 6714 vezes

Diante disso, podemos aplicar a Lei dos Senos:

[tex3]\frac{\vec v }{\sen \( 180 \degree - \alpha\)} = \frac{\vec u}{\sen\( 180 \degree - \beta \)}=\frac{\vec w}{\sen \( 180\degree -\gamma\)}[/tex3]

No entanto, da trigonometria, sabemos que [tex3]\sen \(180 \degree - x \) = \sen \( x\).[/tex3] Então, ficamos com:

[tex3]{\color{black} \boxed{_{_{{⠀}_{⠀}}} {\frac{\vec{v}}{\sen \alpha} = \frac{\vec u}{\sen \beta } = \frac{\vec w}{\sen \gamma}}_{_{{⠀}_{⠀}}}^{{⠀}^{⠀}} }}[/tex3]

Portanto, fica demonstrado que, se três forças atuam em um ponto e mantém esse ponto em equilíbrio, então as relações que obtemos são válidas. Alguns exercícios resolvidos com esse teorema:

viewtopic.php?f=15&t=80235
viewtopic.php?f=15&t=80181
viewtopic.php?f=41&t=65007
viewtopic.php?f=9&t=80591


[1]. A relação é válida para um corpo sob ação exclusiva de três forças concorrentes que o mantém em equilíbrio.

Movido de Física I para Demonstrações em 13 Abr 2020, 21:03 por MateusQqMD

Responder
  • Tópicos Semelhantes
    Resp.
    Exibições
    Últ. msg

Voltar para “Demonstrações”