Ensino SuperiorPrincípio da Casa dos Pombos Tópico resolvido

Poste aqui problemas sobre assuntos estudados no Ensino Superior (exceto os cobrados em concursos públicos e escolas militares).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
thetruth
Elite
Mensagens: 167
Registrado em: Dom 02 Set, 2018 18:36
Última visita: 12-09-19
Agradeceu: 66
Agradeceram: 3
Set 2018 02 18:47

Princípio da Casa dos Pombos

Mensagem não lida por thetruth » Dom 02 Set, 2018 18:47

galera estou com uma tremenda dificuldade nesse exercício, será que alguma alma bondosa poderia me ajudar??

15. Encontre o número mínimo n de inteiros a serem selecionados de um conjunto S = {1,2,...,9}, tal que:
a) a soma de dois dos n inteiros é par
b) a diferença de dois dos n inteiros é 5

Última edição: caju (Dom 02 Set, 2018 22:39). Total de 2 vezes.
Razão: arrumar título.



Avatar do usuário
MateusQqMD
5 - Mestre
Mensagens: 1577
Registrado em: Qui 16 Ago, 2018 19:15
Última visita: 17-09-19
Localização: Fortaleza
Agradeceu: 795
Agradeceram: 1039
Set 2018 02 20:27

Re: Princípio da Casa dos Pombos

Mensagem não lida por MateusQqMD » Dom 02 Set, 2018 20:27

a) 2, basta selecionarmos dois pares.

b) 2, basta selecionarmos o 1 e o 6.



~I.H

Avatar do usuário
Autor do Tópico
thetruth
Elite
Mensagens: 167
Registrado em: Dom 02 Set, 2018 18:36
Última visita: 12-09-19
Agradeceu: 66
Agradeceram: 3
Set 2018 02 20:36

Re: Princípio da Casa dos Pombos

Mensagem não lida por thetruth » Dom 02 Set, 2018 20:36

na verdade não, o exercício é tipo assim, vamos supor que eu pegue 2 numero 1 e 2, a soma não dará um par, vamos supor que eu pegue mais 2, agora 5 e 6, a soma ainda não será par. qual é o numero minimo de números que eu teria certeza que sairia um par? a mesma coisa abaixo


teriamos que calcular o pior caso possível, onde seria esgotada todas as opções de somas impares e que a proxima soma concerteza fosse par.

a mesma ideia vale para letra b
Última edição: thetruth (Dom 02 Set, 2018 20:39). Total de 1 vez.



Avatar do usuário
MateusQqMD
5 - Mestre
Mensagens: 1577
Registrado em: Qui 16 Ago, 2018 19:15
Última visita: 17-09-19
Localização: Fortaleza
Agradeceu: 795
Agradeceram: 1039
Set 2018 02 20:40

Re: Princípio da Casa dos Pombos

Mensagem não lida por MateusQqMD » Dom 02 Set, 2018 20:40

Na verdade, sim.

Há duas possibilidades:

1) você digitou o enunciado errado
Nessa situação faltou um
certeza, garantir..
Como você colocou no seu último comentário.

2) o gabarito está errado.

Como proposto está, a resposta é dois para ambos os itens.


~I.H

Avatar do usuário
Autor do Tópico
thetruth
Elite
Mensagens: 167
Registrado em: Dom 02 Set, 2018 18:36
Última visita: 12-09-19
Agradeceu: 66
Agradeceram: 3
Set 2018 02 20:57

Re: Princípio da Casa dos Pombos

Mensagem não lida por thetruth » Dom 02 Set, 2018 20:57

MateusQqMD escreveu:
Dom 02 Set, 2018 20:40
Na verdade, sim.

Há duas possibilidades:

1) você digitou o enunciado errado
Nessa situação faltou um
certeza, garantir..
Como você colocou no seu último comentário.

2) o gabarito está errado.

Como proposto está, a resposta é dois para ambos os itens.
bom, o enunciado é esse mesmo. então você poderia me tirar uma dúvida? como seria se na questão tivesse um "garantir" ou "certeza"?



Avatar do usuário
MateusQqMD
5 - Mestre
Mensagens: 1577
Registrado em: Qui 16 Ago, 2018 19:15
Última visita: 17-09-19
Localização: Fortaleza
Agradeceu: 795
Agradeceram: 1039
Set 2018 04 15:03

Re: Princípio da Casa dos Pombos

Mensagem não lida por MateusQqMD » Ter 04 Set, 2018 15:03

Observe, em primeiro lugar, que para a soma de dois números naturais ser par, há apenas duas possibilidades: os dois números são pares ou os dois números são ímpares. Sabendo disso, basta selecionar um subconjunto que garanta a existência de pelo menos uma das situações que satisfaça o problema, isto é, devemos ter, no mínimo, dois pares ou dois ímpares. Assim, o menor subconjunto para garantirmos que a soma de dois dos n inteiros é par é formado por três elementos.

b) Pense de forma semelhante ao item anterior.



~I.H

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Ensino Superior”