OlimpíadasNúmeros Inteiros Tópico resolvido

Aqui devem ser postados problemas Olímpicos. Informe a olimpíada e o ano no título do tópico. Exemplo: (OBM - 2008).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
Babi123
2 - Nerd
Mensagens: 803
Registrado em: Sex 28 Jul, 2017 21:05
Última visita: 20-02-20
Agradeceu: 1284 vezes
Agradeceram: 262 vezes
Nov 2017 27 17:39

Números Inteiros

Mensagem não lida por Babi123 »

(OBM) Cinco inteiros positivos [tex3]a,b,c,d,e[/tex3] maiores que um satisfazem as seguintes condições:
[tex3]\begin{cases}
a\cdot (b+c+d+e)=128 \\
b\cdot (a+c+d+e)=155 \\
c\cdot (a+b+d+e)=203 \\
d\cdot (a+b+c+e)=243\\
e\cdot (a+b+c+d)=275
\end{cases}[/tex3]
Quanto vale a soma [tex3]a+b+c+d+e[/tex3] ?

a) 9

b) 16

c) 25

d) 36

e) 49




Auto Excluído (ID:12031)
6 - Doutor
Última visita: 31-12-69
Nov 2017 27 17:50

Re: Números Inteiros

Mensagem não lida por Auto Excluído (ID:12031) »

[tex3]a+b+c+d+e = s[/tex3] inteiro
[tex3]b*(s-b) = 155 = 5 \cdot 31[/tex3] logo ou b=5 e s-b = 31 ou b = 31 e s-b = 5
se b = 5 então s=36 se b=31 então s=36 de qualquer forma s=36 é a única solução possível do sistema.

você pode conferir que ela de fato satisfaz as demais equações

Última edição: Auto Excluído (ID:12031) (Seg 27 Nov, 2017 18:06). Total de 1 vez.



Avatar do usuário
Autor do Tópico
Babi123
2 - Nerd
Mensagens: 803
Registrado em: Sex 28 Jul, 2017 21:05
Última visita: 20-02-20
Agradeceu: 1284 vezes
Agradeceram: 262 vezes
Nov 2017 27 17:59

Re: Números Inteiros

Mensagem não lida por Babi123 »

Ótimo sousóeu, entendi perfeitamente a resolução. Fico muito Grata! :D:lol:



Auto Excluído (ID:12031)
6 - Doutor
Última visita: 31-12-69
Nov 2017 27 18:12

Re: Números Inteiros

Mensagem não lida por Auto Excluído (ID:12031) »

na verdade minha solução estava incompleta agora que eu vi, poderia ter também: [tex3]b=1[/tex3] e [tex3]s-b=155[/tex3] o que daria uma nova opção pra s, que seria s=156.

Nesse caso basta considerar outra equação, como a 3: [tex3]c*(156-c) = 203[/tex3] e resolver o baskara em c:

[tex3]c^2-156c +203 = 0 \implies (c-78)^2 = 78^2-203 = 5881[/tex3]

como 5881 não é quadrado perfeito, se s=156 teríamos c um número irracional, de novo, dá pra checar que isso não ocorre pra s=36



Avatar do usuário
Autor do Tópico
Babi123
2 - Nerd
Mensagens: 803
Registrado em: Sex 28 Jul, 2017 21:05
Última visita: 20-02-20
Agradeceu: 1284 vezes
Agradeceram: 262 vezes
Nov 2017 27 18:51

Re: Números Inteiros

Mensagem não lida por Babi123 »

Mas o enunciado fala que [tex3]a,b,c,d,e[/tex3] são inteiros maiores que 1. acredito q sua solução estava completa. :lol:




Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem Números Inteiros
    por cicero444 » Ter 06 Jun, 2017 11:44 » em Ensino Fundamental
    0 Respostas
    155 Exibições
    Última msg por cicero444
    Ter 06 Jun, 2017 11:44
  • Nova mensagem Números Inteiros
    por Hanon » Qua 26 Jul, 2017 12:26 » em Ensino Médio
    5 Respostas
    336 Exibições
    Última msg por undefinied3
    Qua 26 Jul, 2017 21:13
  • Nova mensagem Números Inteiros
    por Hanon » Qua 26 Jul, 2017 12:18 » em Ensino Médio
    1 Respostas
    124 Exibições
    Última msg por csmarcelo
    Qua 26 Jul, 2017 14:20
  • Nova mensagem Números Inteiros
    por Hanon » Qua 26 Jul, 2017 12:13 » em Ensino Médio
    2 Respostas
    257 Exibições
    Última msg por Hanon
    Qua 26 Jul, 2017 14:16
  • Nova mensagem Combinação - Produto Positivo de Números Inteiros
    por ismaelmat » Sex 28 Jul, 2017 16:38 » em Ensino Médio
    1 Respostas
    591 Exibições
    Última msg por undefinied3
    Sex 28 Jul, 2017 17:33

Voltar para “Olimpíadas”