Ensino MédioConjunto - Número de elementos (FME) Tópico resolvido

Problemas sobre assuntos estudados no Ensino Médio devem ser postados aqui. Se o problema for de Vestibular, poste-o no fórum Pré-Vestibular

Moderador: [ Moderadores TTB ]

Autor do Tópico
snooplammer
5 - Mestre
Mensagens: 1464
Registrado em: Seg 24 Out, 2016 14:18
Última visita: 05-12-19
Agradeceu: 273 vezes
Agradeceram: 727 vezes
Out 2017 21 23:48

Conjunto - Número de elementos (FME)

Mensagem não lida por snooplammer » Sáb 21 Out, 2017 23:48

Considerando os conjuntos A, Bee, representados ao lado, e sabendo que

n(A U B)=24
n(A [tex3]\cap [/tex3] B)=4
n(B U C)=16
n(A - C)=11
n(B - C)=10

Calcule:

a) n(A - B)
b) n(A [tex3]\cap [/tex3] B [tex3]\cap [/tex3] C)
c) n(B -(C U A))
d) n((A [tex3]\cap [/tex3] B) - C)
e) n(B - (A [tex3]\cap [/tex3] B))

nconjuntos.png
nconjuntos.png (43.96 KiB) Exibido 2921 vezes




Avatar do usuário
MatheusBorges
5 - Mestre
Mensagens: 2004
Registrado em: Dom 16 Jul, 2017 10:25
Última visita: 21-05-19
Agradeceu: 468 vezes
Agradeceram: 870 vezes
Out 2017 22 01:27

Re: Conjunto - Número de elementos (FME)

Mensagem não lida por MatheusBorges » Dom 22 Out, 2017 01:27

[tex3]A\cup B=24[/tex3]
Perceba que este é o número total de elementos
[tex3]B\cup C=16 [/tex3] [tex3]\rightarrow [/tex3] B=16 porque o C é subconjunto de B

Agora B+A=24

CHAMEMOS DE [tex3]A^{´}[/tex3] O resto de A sem a intersecção com B
E De [tex3]B^{´}[/tex3] O resto de B sem a intersecção com A que é[tex3]B^{´}=16-4=12[/tex3]

Então[tex3]A^{´}+B^{´}+\cap =24[/tex3]
Mas [tex3]\cap =4[/tex3] [tex3]\rightarrow [/tex3] [tex3]A^{´}=24-12-4=8[/tex3]

Repare que [tex3]A-C=11[/tex3] [tex3]\rightarrow [/tex3] [tex3]A\cap B-C =1\rightarrow A\cap B\cap C=3[/tex3] pois [tex3]A\cap B=4[/tex3]

Veja:[tex3]B-C=10 [/tex3] e [tex3]B\cup C=16\rightarrow C=6[/tex3] [tex3]\therefore [/tex3] [tex3]B\cap C-A=3[/tex3]

E como [tex3]B-C=10[/tex3] e [tex3]A-C=1[/tex3] o [tex3]B-A-C=9[/tex3]

Última edição: MatheusBorges (Dom 22 Out, 2017 03:24). Total de 1 vez.


A alegria está na luta, na tentativa, no sofrimento envolvido e não na vitória propriamente dita.
-Mahatma Gandhi

Avatar do usuário
MatheusBorges
5 - Mestre
Mensagens: 2004
Registrado em: Dom 16 Jul, 2017 10:25
Última visita: 21-05-19
Agradeceu: 468 vezes
Agradeceram: 870 vezes
Out 2017 22 01:30

Re: Conjunto - Número de elementos (FME)

Mensagem não lida por MatheusBorges » Dom 22 Out, 2017 01:30

Screen Shot 2018-02-28 at 14.22.01.png
Screen Shot 2018-02-28 at 14.22.01.png (125.21 KiB) Exibido 2823 vezes
Última edição: caju (Qua 28 Fev, 2018 14:22). Total de 1 vez.
Razão: Arrumar imagem.


A alegria está na luta, na tentativa, no sofrimento envolvido e não na vitória propriamente dita.
-Mahatma Gandhi

Avatar do usuário
MatheusBorges
5 - Mestre
Mensagens: 2004
Registrado em: Dom 16 Jul, 2017 10:25
Última visita: 21-05-19
Agradeceu: 468 vezes
Agradeceram: 870 vezes
Out 2017 22 01:32

Re: Conjunto - Número de elementos (FME)

Mensagem não lida por MatheusBorges » Dom 22 Out, 2017 01:32

Acredito que o mais difícil já foi feito, seria interessante você usar os dados e exercitar nas alternativas. Se tiver dúvida, avise.


A alegria está na luta, na tentativa, no sofrimento envolvido e não na vitória propriamente dita.
-Mahatma Gandhi

Avatar do usuário
rippertoru
4 - Sabe Tudo
Mensagens: 412
Registrado em: Ter 23 Mai, 2017 16:46
Última visita: 05-12-19
Localização: Paraíba
Agradeceu: 22 vezes
Agradeceram: 283 vezes
Out 2017 22 02:31

Re: Conjunto - Número de elementos (FME)

Mensagem não lida por rippertoru » Dom 22 Out, 2017 02:31

Olá.

Considerações iniciais:
[tex3]n(B-C)= 10[/tex3] e [tex3]n(B\cup C) = 16[/tex3] , então: [tex3]\boxed{n(C) = 6}[/tex3] ;

Como C está contido em B, então [tex3] \boxed{n(B) = n(B \cup C) = 16}[/tex3] ;

Se [tex3]n(A\cup B) = 24[/tex3] , [tex3]n(B) = 16[/tex3] , e [tex3](n(A) - n(A\cap B)) = 24-16 = 8[/tex3] , assim:

[tex3]\boxed{n(A) = n(A\cap B) + (n(A) - n(A \cap B)) = 4 + 8 = 12}[/tex3]

[tex3]\boxed{n(A\cap C) = n(A) - n(A-C) = 12 - 11 = 1}[/tex3]


a) [tex3]n(A-B)[/tex3]
[tex3]n(A - B) = n(A\cup B) - n(B) = 24 - 16 = 8[/tex3]

b) [tex3]n(A\cap B\cap C)[/tex3]
[tex3]n(A\cap B\cap C) = n(A \cap C) = 1[/tex3]

c)[tex3]n(B - (C \cup A))[/tex3]
[tex3]n(B - (C \cup A)) = n(B-C) - n(A \cap B) + n(A \cap C) = 10 - 4 + 1 = 7[/tex3]

d) [tex3]n((A \cap B) - C)[/tex3]
[tex3] n((A \cap B) - C) = n(A\cap B) - n(A\cap C) = 4 - 1 = 3[/tex3]

e) [tex3]n(B - (A\cap B))[/tex3]
[tex3] n(B - (A\cap B)) = n(B) - n(A\cap B) = 16 - 4 = 12[/tex3]

Última edição: rippertoru (Dom 22 Out, 2017 02:34). Total de 4 vezes.


Sem sacrifício não há vitória.

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Ensino Médio”