Pré-Vestibular(FUVEST 2017) Geometria Plana Tópico resolvido

Poste aqui problemas de Vestibulares. Informe a fonte, o ano e o assunto. Exemplo: (FUVEST - 2008) Logaritmos.

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
lincoln1000
2 - Nerd
Mensagens: 350
Registrado em: Dom 02 Jul, 2017 00:11
Última visita: 13-06-19
Agradeceu: 289
Agradeceram: 154
Contato:
Set 2017 13 14:24

(FUVEST 2017) Geometria Plana

Mensagem não lida por lincoln1000 » Qua 13 Set, 2017 14:24

O retângulo [tex3]ABCD[/tex3] , representado na figura, tem lados de comprimento [tex3]AB=3[/tex3] e [tex3]BC=4[/tex3] . O ponto [tex3]P[/tex3] pertence ao lado [tex3]\overline{BC}[/tex3] e [tex3]\overline{BP}=1[/tex3] . Os pontos [tex3]R[/tex3] , [tex3]S[/tex3] e [tex3]T[/tex3] pertencem aos lados [tex3]\overline{AB}[/tex3] , [tex3]\overline{CD}[/tex3] e [tex3]\overline{AD}[/tex3] , respectivamente. O segmento [tex3]\overline{RS}[/tex3] é paralelo a [tex3]\overline{AD}[/tex3] e intercepta [tex3]\overline{DP}[/tex3] no ponto [tex3]Q[/tex3] . O segmento [tex3]\overline{TQ}[/tex3] é paralelo a [tex3]\overline{AB}[/tex3]
Sem título.png
Sem título.png (9.8 KiB) Exibido 1453 vezes
Sendo [tex3]x[/tex3] o comprimento de [tex3]\overline{AR}[/tex3] , o maior valor da soma das áreas do retângulo [tex3]ARQT[/tex3] , do triângulo [tex3]CQP[/tex3] e do triângulo [tex3]DQS[/tex3] , para [tex3]x[/tex3] variando no intervalo aberto [tex3]]0,3[[/tex3] , é

a) [tex3]\frac{61}{8}[/tex3]
b) [tex3]\frac{33}{4}[/tex3]
c) [tex3]\frac{17}{2}[/tex3]
d) [tex3]\frac{35}{4}[/tex3]
e) [tex3]\frac{73}{8}[/tex3]
Resposta

a) [tex3]\frac{61}{8}[/tex3]

Última edição: lincoln1000 (Qua 13 Set, 2017 14:27). Total de 2 vezes.


"Como é que vão aprender sem incentivo de alguém, sem orgulho e sem respeito, sem saúde e sem paz."

Avatar do usuário
joaopcarv
3 - Destaque
Mensagens: 359
Registrado em: Ter 18 Out, 2016 21:11
Última visita: 15-10-19
Agradeceu: 534
Agradeceram: 342
Set 2017 13 16:29

Re: (FUVEST 2017) Geometria Plana

Mensagem não lida por joaopcarv » Qua 13 Set, 2017 16:29

Eu queria poder enviar uns anexos para melhor explicação... mas agora não posso :?

Mesmo assim, vou tentar explicar de forma bem descritiva :

[tex3]BC \ = \ BP \ + \ PC \ \rightarrow[/tex3] Sendo : [tex3]BC \ = \ 4[/tex3] e [tex3]BP \ = \ 1[/tex3] :

[tex3]4 \ = 1 \ + \ PC[/tex3]

[tex3]PC \ = \ 3[/tex3]

Agora, observe o [tex3]\Delta CDP[/tex3] . Temos [tex3]\rightarrow[/tex3]

[tex3]D \widehat{C} P \ = \ 90 ^\circ \ e \ CD \ = \ PC \ = 3[/tex3] . Logo, é um triângulo retângulo e isósceles.

Por isso : [tex3]D \widehat{C} P \ = \ P \widehat{D} C \ = \ 45 ^\circ[/tex3]

Veja o [tex3]\Delta DQS[/tex3] . Ele tem um ângulo reto e [tex3]Q \widehat{D} S \ = \ 45^\circ[/tex3] .
Então também é um triângulo retângulo e isósceles, com [tex3]DS \ = \ QS \ = x[/tex3] .

Como [tex3]DS \ \perp \ QS \ \rightarrow[/tex3]

[tex3]A(\Delta DQS) \ = \ \frac{DS \ . \ QS}{2}[/tex3]

[tex3]A(\Delta DQS) \ = \ \frac{x^2}{2}[/tex3]

Para o [tex3]\Delta CQP \ \rightarrow[/tex3]

Veja que a altura relativa a [tex3]CP[/tex3] é igual a [tex3]RB \ = \ (3 \ - \ x)[/tex3] . Para essa área, podemos fazer :

[tex3]A(\Delta CQP) \ = \ \frac{CP \ . \ RB}{2}[/tex3]

[tex3]A(\Delta CQP) \ = \ \frac{3 \ . \ (3 \ - \ x)}{2}[/tex3]

[tex3]A(\Delta CQP) \ = \ \frac{9\ - \ 3 \ . \ x}{2}[/tex3]

Para o retângulo [tex3]ARQT \ \rightarrow[/tex3]

A base dele é [tex3]AR \ = \ x[/tex3] .

Como a gente já viu (lá no [tex3]\Delta DQS[/tex3] ), [tex3]AR \ = \ DS \ = \ QS \ = \ DT \ = \ x[/tex3] . Logo, a altura [tex3]AT[/tex3] é :

[tex3]AT \ = \ AD \ - \ DT[/tex3]

[tex3]AT \ = \ (4 \ - \ x)[/tex3]

[tex3]A(ARQT) \ = \ AR \ . \ AT[/tex3]

[tex3]A(ARQT) \ = \ x \ . \ (4 \ - \ x)[/tex3]

[tex3]A(ARQT) \ = \ 4 \ . \ x \ - \ x^2[/tex3]

[tex3]A(\Delta DQS) \ + \ A(\Delta CQP) \ + \ A(ARQT)[/tex3] \ = [/tex3]

[tex3]\frac{x^2}{2} \ + \ \frac{9\ - \ 3 \ . \ x}{2} \ + \ 4 \ . \ x \ - \ x^2 \ \rightarrow[/tex3] Juntando termos semelhantes, chegamos em:

[tex3]-\frac{x^2}{2} \ + \ \frac{5 \ . \ x}{2} \ + \frac{9}{2}[/tex3]

(Concavidade para baixo)

A maior área é no maior [tex3]x[/tex3] . Para isso, usamos [tex3]Xv[/tex3] e [tex3]Yv[/tex3] .

Poderíamos fazer direto por : [tex3]Yv \ = \ \frac{- \Delta}{4 \ . \ a}[/tex3] , só que, pelos valores de [tex3]a, b, c[/tex3] acho melhor calcular [tex3]Xv[/tex3] e substituir.

[tex3]Xv \ = \ \frac{- b}{2 \ . \ a}[/tex3]

[tex3]Xv \ = \ \frac{- \ \frac{5}{2}}{\frac{2 \ . \ -1}{2}}[/tex3]

[tex3]Xv \ = \ \frac{5}{2} \ \rightarrow[/tex3] Substituindo :

[tex3]-\frac{\frac{5}{2}^2}{2} \ + \ \frac{5 \ . \ \frac{5}{2}}{2} \ + \frac{9}{2} \ =[/tex3]

[tex3]\frac{-25}{8} \ + \ \frac{25}{4} \ + \ \frac{9}{2} \ =[/tex3]

[tex3]\frac{25}{8} \ + \ \frac{9}{2} \ =[/tex3]

[tex3]\frac{25}{8} \ + \ \frac{36}{8} \ =[/tex3]

[tex3]\boxed{\boxed{\frac{61}{8} \ u^{2}}} \ \rightarrow[/tex3] Maior soma possível dessas áreas!



"That's all I'd do all day. I'd just be the catcher in the rye and all."
Poli-USP
04/10/2017 Jn S2

Avatar do usuário
joaopcarv
3 - Destaque
Mensagens: 359
Registrado em: Ter 18 Out, 2016 21:11
Última visita: 15-10-19
Agradeceu: 534
Agradeceram: 342
Set 2017 13 16:31

Re: (FUVEST 2017) Geometria Plana

Mensagem não lida por joaopcarv » Qua 13 Set, 2017 16:31

Agora analisando... acho que daria na mesma ter calculado [tex3]Xv[/tex3] e [tex3]Yv[/tex3] (no que diz respeito ao "trabalho" de fazer continhas com essas frações)... kk


"That's all I'd do all day. I'd just be the catcher in the rye and all."
Poli-USP
04/10/2017 Jn S2

Avatar do usuário
Autor do Tópico
lincoln1000
2 - Nerd
Mensagens: 350
Registrado em: Dom 02 Jul, 2017 00:11
Última visita: 13-06-19
Agradeceu: 289
Agradeceram: 154
Contato:
Set 2017 13 16:58

Re: (FUVEST 2017) Geometria Plana

Mensagem não lida por lincoln1000 » Qua 13 Set, 2017 16:58

Hmmm... Então a ideia é colocar todas as áreas em função de [tex3]x[/tex3] para dai resolver, boa resolução, obrigado!


"Como é que vão aprender sem incentivo de alguém, sem orgulho e sem respeito, sem saúde e sem paz."

Avatar do usuário
joaopcarv
3 - Destaque
Mensagens: 359
Registrado em: Ter 18 Out, 2016 21:11
Última visita: 15-10-19
Agradeceu: 534
Agradeceram: 342
Set 2017 13 17:06

Re: (FUVEST 2017) Geometria Plana

Mensagem não lida por joaopcarv » Qua 13 Set, 2017 17:06

Sempre que falar maior área em geometria (tem uma da Fuvest de analítica que fala disso, por exemplo) e ele der uma variável, eu tento colocar em função dessa variável para assim chegar em um polinômio de segundo grau e ir pelas coordenadas do vértice.

Questòes assim são mais clichês... rsrs

Vc quer USP... quer qual curso?


"That's all I'd do all day. I'd just be the catcher in the rye and all."
Poli-USP
04/10/2017 Jn S2

Avatar do usuário
Gwynbleidd
sênior
Mensagens: 40
Registrado em: Sáb 27 Out, 2018 09:15
Última visita: 21-10-19
Agradeceu: 26
Agradeceram: 8
Jun 2019 24 13:50

Re: (FUVEST 2017) Geometria Plana

Mensagem não lida por Gwynbleidd » Seg 24 Jun, 2019 13:50

Não consigo enxergar como a altura relativa a CP é igual a RB, alguém pode dar uma ajuda?



“Evil is evil. Lesser, greater, middling… makes no difference. The degree is arbitrary. The definition’s blurred. If I’m to choose between one evil and another, I’d rather not choose at all."

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Pré-Vestibular”