Olá a todos. Estou com dificuldades pra resolver uma questão de física e gostaria de contar com a ajuda de vocês. A questão é:
Considere um modelo atômico formado por uma esfera rígida isolante de raio a com carga total +Q envolta por uma casca esférica de raio externo b com carga total –Q. Determine:
a) O campo elétrico para cada região da distribuição.
b) Determine o potencial elétrico em cada região como o acima.
Física III ⇒ Campo Elétrico e Potencial Elétrico
- rafaalves2525
- Mensagens: 1
- Registrado em: 13 Set 2017, 13:45
- Última visita: 18-09-17
Set 2017
13
13:50
Campo Elétrico e Potencial Elétrico
Editado pela última vez por caju em 13 Set 2017, 13:50, em um total de 1 vez.
Razão: Retirar CAPS LOCK do título.
Razão: Retirar CAPS LOCK do título.
- Baguncinha
- Mensagens: 56
- Registrado em: 26 Jul 2018, 13:44
- Última visita: 07-11-20
- Localização: Califórnia
- Agradeceu: 37 vezes
- Agradeceram: 15 vezes
Jul 2018
26
15:37
Re: Campo Elétrico e Potencial Elétrico
Raio da esfera:a
Carga total:+Q
Raio externo:b
Carga total:-Q
a)Lembre-se que o campo elétrico no interior de uma esfera é nulo, essa afirmação é válida tanto para uma esfera rígida quanto para uma oca.Dessa forma, como a esfera A está inserida dentro da esfera B, todo o campo elétrico dessa região é nulo.
A partir de agora, existem duas situações para serem analisadas:
*Campo elétrico infinitamente próximo da casca da esfera B é: E/2
E=K|-q|/d^2
d=Raio externo=B
E=Kq/b^2
[tex3]\therefore [/tex3] E=Kq/b^2*2
*Campo elétrico fora da esfera B=E=Kq/d^2
b)O potencial elétrico é constante para todos os pontos, dessa forma:
Va=kq/a
Vb=-Kq/b
Fiz uma baguncinha na física.
Carga total:+Q
Raio externo:b
Carga total:-Q
a)Lembre-se que o campo elétrico no interior de uma esfera é nulo, essa afirmação é válida tanto para uma esfera rígida quanto para uma oca.Dessa forma, como a esfera A está inserida dentro da esfera B, todo o campo elétrico dessa região é nulo.
A partir de agora, existem duas situações para serem analisadas:
*Campo elétrico infinitamente próximo da casca da esfera B é: E/2
E=K|-q|/d^2
d=Raio externo=B
E=Kq/b^2
[tex3]\therefore [/tex3] E=Kq/b^2*2
*Campo elétrico fora da esfera B=E=Kq/d^2
b)O potencial elétrico é constante para todos os pontos, dessa forma:
Va=kq/a
Vb=-Kq/b
Fiz uma baguncinha na física.
- Andre13000
- Mensagens: 847
- Registrado em: 18 Mar 2017, 17:30
- Última visita: 02-03-22
- Agradeceu: 150 vezes
- Agradeceram: 563 vezes
Jul 2018
26
17:20
Re: Campo Elétrico e Potencial Elétrico
Para resolver a questão, basta aplicar Gauss. A casca esférica age como uma gaiola de Faraday, e portanto devemos nos preocupar somente com a carga da esfera menor ao nos situarmos no interior da casca esférica.
[tex3]E_{dentro}=\frac{kQ}{r^2}[/tex3]
Agora, quando estamos fora da casca, o campo é zero, pois o fluxo por uma superfície gaussiana qualquer que englobe as duas cargas é zero.
Para calcular o potencial criado, basta notar que na superfície da esfera menor, há uma carga +Q, no interior da casca deve haver uma carga -Q, e no seu exterior a carga é nula.
[tex3]V_{dentro}=\frac{kQ}{r}-\frac{kQ}{b}\\
V_{fora}=\frac{kQ}{r}-\frac{kQ}{r}=0[/tex3]
[tex3]E_{dentro}=\frac{kQ}{r^2}[/tex3]
Agora, quando estamos fora da casca, o campo é zero, pois o fluxo por uma superfície gaussiana qualquer que englobe as duas cargas é zero.
Para calcular o potencial criado, basta notar que na superfície da esfera menor, há uma carga +Q, no interior da casca deve haver uma carga -Q, e no seu exterior a carga é nula.
[tex3]V_{dentro}=\frac{kQ}{r}-\frac{kQ}{b}\\
V_{fora}=\frac{kQ}{r}-\frac{kQ}{r}=0[/tex3]
“Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” -Richard Feynman
-
- Tópicos Semelhantes
- Resp.
- Exibições
- Últ. msg
-
- 2 Resp.
- 3053 Exibições
-
Últ. msg por Pedro900
-
- 2 Resp.
- 3277 Exibições
-
Últ. msg por CherryBoy
-
- 0 Resp.
- 1140 Exibições
-
Últ. msg por Gabriel217GBA
-
- 1 Resp.
- 1532 Exibições
-
Últ. msg por Planck
-
- 1 Resp.
- 852 Exibições
-
Últ. msg por Jardani