Questões PerdidasParametrização(Diomara)

Aqui ficará uma coletânea de questões antigas, com mais de 1 ano, que não foram respondidas ainda. Não é possível postar novas questões nesse fórum, apenas é possível resolver as que forem movidas para cá pelos moderadores.
Avatar do usuário
Toplel94
1 - Trainee
Mensagens: 158
Registrado em: 25 Ago 2013, 22:31
Última visita: 01-10-22
Agradeceu: 15 vezes
Agradeceram: 26 vezes
Mar 2016 24 19:18

Parametrização(Diomara)

Mensagem não lida por Toplel94 »

Uma haste, presa na origem do plano [tex3]xy[/tex3] , ocupa a posição [tex3]x=ty[/tex3] . A haste intercepta [tex3]y=4[/tex3] no ponto S e a elipse [tex3]4x^2 +(y-2)^2=4[/tex3] no ponto Q. Quando [tex3]t[/tex3] varia, o vértice P do triângulo [tex3]QPS[/tex3] descreve uma curva.

A questão é divida em 3 subtópicos:

(a) Escreva equações paramétricas dessa curva, em função do parâmetro [tex3]t[/tex3] .

Temos que:
(1)[tex3]x=ty[/tex3] , (2) [tex3]4x^2 + (y-2)^2=4[/tex3] e (3)[tex3]y=\dfrac{x}{t}[/tex3] .

Aplicando (1) em (2):

[tex3]4(ty)^2 + (y-2)^2=4 \Rightarrow 4t^2y^2+y^2-4y+4=4 \Rightarrow y^2(4t^2 +1)- 4y=0[/tex3] , porém temos (3):

[tex3]\dfrac{x^2}{t^2}(4t^2+1)-\dfrac{4x}{t}=0 \Rightarrow \dfrac{x}{t}(4^2+1)-4=0 \Rightarrow \boxed{x=\dfrac{4t}{4t^2+1}}[/tex3] , como sabemos da relação [tex3]x=yt \Rightarrow \boxed {y=\dfrac{4}{4t^2+1}}[/tex3] .

Porém no gabarito está: [tex3]x=4t[/tex3] e [tex3]y=\dfrac{4}{4t^2+4}[/tex3] , já substitui nas equações da elipse e não bate alguma igualdade, assim como da reta [tex3]x=ty[/tex3] (ao contrário da minha resolução).

(b) Esboçar o gráfico da curva:
lol.jpg
lol.jpg (40.98 KiB) Exibido 4080 vezes
(c) Escrever a equação cartesiana da curva:

Como eu posso sumir o parâmetro [tex3]t[/tex3] ?
[tex3]y=\dfrac{4}{4t^2+1}[/tex3]
[tex3]x=\dfrac{4t}{4t^2+1}[/tex3]

Editado pela última vez por caju em 05 Fev 2020, 11:42, em um total de 2 vezes.
Razão: tex --> tex3
Avatar do usuário
Rengaw
iniciante
Mensagens: 1
Registrado em: 15 Fev 2022, 17:34
Última visita: 15-02-22
Fev 2022 15 18:02

Re: Parametrização(Diomara)

Mensagem não lida por Rengaw »

Como x=ty, e y=4, início do movimento, x=4t. Atribuir t=0, à equação y=x/t, tona y impossível, teríamos que estabelecer t diferente de zero, contrariando a possibilidade de t=0, assim x=4t e não x=4t/4t^2+1.

Movido de Questões Perdidas para Racso em 20 Mai 2024, 22:05 por caju

Movido de Racso para Questões Perdidas em 20 Mai 2024, 22:47 por caju

Responder
  • Tópicos Semelhantes
    Resp.
    Exibições
    Últ. msg
  • Nova mensagem (Diomara) Cálculo
    por Deleted User 23699 » » em Ensino Superior
    1 Resp.
    404 Exibições
    Últ. msg por Cardoso1979
  • Nova mensagem (Diomara) Cálculo
    por Deleted User 23699 » » em Ensino Superior
    1 Resp.
    391 Exibições
    Últ. msg por Cardoso1979
  • Nova mensagem Parametrização de Curvas
    por AnaBela » » em Ensino Superior
    2 Resp.
    918 Exibições
    Últ. msg por Cardoso1979
  • Nova mensagem Parametrização de cone (u,v) coordenadas
    por Evolution » » em Ensino Superior
    1 Resp.
    5011 Exibições
    Últ. msg por fabit
  • Nova mensagem Curva de Agnesi - Parametrização
    por Toplel94 » » em Ensino Superior
    2 Resp.
    2908 Exibições
    Últ. msg por Toplel94

Voltar para “Questões Perdidas”