Mesmo se considerarmos o zero como número natural, para [tex3]a=0 [/tex3] ou [tex3]b=0[/tex3], teríamos [tex3]ab=0 [/tex3] quadrado perfeito. Então supomos [tex3]a,b \geq 1 [/tex3].
[tex3]a+b =b\cdot (a-c) [/tex3]
[tex3](1-a)(b-1)+1+bc=0[/tex3]
[tex3](1-a)(b-1)+p^2-c+bc=0 [/tex3]
[tex3](b-1)(a-c-1) = p^2 [/tex3]
[tex3](b-1)(a-p^2) = p^2 [/tex3]
Primeiro caso:^
[tex3]\begin{cases}
a-p^2 = p^2 \\
b-1 = 1
\end{cases}\rightarrow \begin{cases}
a=2p^2 \\
b=2
\end{cases}\rightarrow \boxed{ab = 4p^2}[/tex3]
Segundo caso:
[tex3]\begin{cases}
a-p^2 = p \\
b-1 = p
\end{cases}\rightarrow \begin{cases}
a=p^2+p \\
b=p+1
\end{cases}\rightarrow \boxed{a+b = (p+1)^2}[/tex3]
Terceiro caso:
[tex3]\begin{cases}
a-p^2 = 1 \\
b-1 = p^2
\end{cases}\rightarrow \begin{cases}
a=p^2+1 \\
b=p^2+1
\end{cases}\rightarrow \boxed{ab = (p^2+1)^2}[/tex3]
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
Problema 80
(Croácia - 2005) Encontre todos os dígitos x,y e z tais que o número [tex3]\overline{13xy45z}[/tex3] seja divisível por 792.
Resposta
x=8,y=0, z=6