Física ICondição necessária para dois carros não se colidirem Tópico resolvido

Mecânica: Estática e Dinâmica

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
miltonsermoud
Junior
Mensagens: 16
Registrado em: Seg 21 Mai, 2018 19:38
Última visita: 13-06-19
Agradeceu: 8
Agradeceram: 1
Mai 2019 15 22:01

Condição necessária para dois carros não se colidirem

Mensagem não lida por miltonsermoud » Qua 15 Mai, 2019 22:01

Dois carros A e B movem-se no mesmo sentido com velocidades [tex3]V_a[/tex3] e [tex3]V_b[/tex3] , respectivamente. Quando o carro A está a distância d atrás de B, o motorista do carro A pisa no freio, o que causa uma desaceleração constante de módulo a. Qual a condição necessária para que não haja colisão entre A e B?
Resposta

[tex3]|V_a - V_b | < \sqrt{2ad}[/tex3]




Avatar do usuário
Planck
5 - Mestre
Mensagens: 1029
Registrado em: Sex 15 Fev, 2019 21:59
Última visita: 13-06-19
Agradeceu: 117
Agradeceram: 613
Mai 2019 15 22:28

Re: Condição necessária para dois carros não se colidirem

Mensagem não lida por Planck » Qua 15 Mai, 2019 22:28

Olá miltonsermoud,

Primeiramente, podemos montar as equações das posições dos carros:

Para o carro A:
[tex3]S_A = V_A \cdot t - \frac{a \cdot t^2}{2}[/tex3]

Para o carro B:
[tex3]S_B = d + V_B \cdot t[/tex3]

Agora, podemos igualar as equações:

[tex3]V_A \cdot t - \frac{a \cdot t^2}{2} = d + V_B \cdot t[/tex3]

Note que podemos obter uma equação do [tex3]2º[/tex3] :

[tex3]V_A \cdot t - \frac{a \cdot t^2}{2} - d + V_B \cdot t = 0[/tex3]

Ou ainda:

[tex3]- \frac{a \cdot t^2}{2} + V_A \cdot t - V_B \cdot t - d= 0[/tex3]

[tex3]- \frac{a \cdot t^2}{2} + t \cdot (V_A - V_B) - d= 0[/tex3]

Multiplicando todos os termos por [tex3]-1[/tex3] :

[tex3]\frac{a \cdot t^2}{2} + t \cdot (V_A - V_B) + d= 0[/tex3]

Nesse sentido, se a equação tiver [tex3]\Delta = 0[/tex3] , há raízes [tex3]\in \mathbb R[/tex3] e ocorre a colisão. Se, as raízes [tex3]\in \mathbb C[/tex3] , então, não ocorre colisão. Desse modo, é preciso que:

[tex3]\Delta < 0[/tex3]

[tex3]b^2 - 4 \cdot a \cdot c < 0[/tex3]

[tex3]\left(V_A - V_B\right)^2 - 4 \cdot \frac{a }{2} \cdot d < 0[/tex3]

[tex3]\left(V_A - V_B\right)^2 < 4 \cdot \frac{a }{2} \cdot d [/tex3]

[tex3]\left(V_A - V_B\right)^2 < 2 \cdot a \cdot d [/tex3]

Logo:

[tex3]{\color{forestgreen}\boxed{|\left(V_A - V_B\right)| < \sqrt{2 \cdot a \cdot d}} }[/tex3]

Última edição: Planck (Qua 15 Mai, 2019 22:30). Total de 1 vez.



Avatar do usuário
Autor do Tópico
miltonsermoud
Junior
Mensagens: 16
Registrado em: Seg 21 Mai, 2018 19:38
Última visita: 13-06-19
Agradeceu: 8
Agradeceram: 1
Mai 2019 16 15:52

Re: Condição necessária para dois carros não se colidirem

Mensagem não lida por miltonsermoud » Qui 16 Mai, 2019 15:52

Planck escreveu:
Qua 15 Mai, 2019 22:28
Nesse sentido, se a equação tiver Δ=0, há raízes ∈ R e ocorre a colisão. Se, as raízes ∈ C, então, não ocorre colisão.
Como o fato de Δ ser nulo implica na colisão dos automóveis? Por causa de d poder ser igual a 0? Afinal [tex3]V_a[/tex3] e [tex3]V_b[/tex3] são (nesse caso) não-nulos e a aceleração de A é menor que 0.



Avatar do usuário
Planck
5 - Mestre
Mensagens: 1029
Registrado em: Sex 15 Fev, 2019 21:59
Última visita: 13-06-19
Agradeceu: 117
Agradeceram: 613
Mai 2019 16 16:01

Re: Condição necessária para dois carros não se colidirem

Mensagem não lida por Planck » Qui 16 Mai, 2019 16:01

miltonsermoud escreveu:
Qui 16 Mai, 2019 15:52
Como o fato de Δ ser nulo implica na colisão dos automóveis? Por causa de d poder ser igual a 0? Afinal [tex3]V_a[/tex3] e [tex3]V_b[/tex3] são (nesse caso) não-nulos e a aceleração de A é menor que 0.
Se o [tex3]\Delta[/tex3] for nulo, haverá duas raízes reais e iguais (exatamente o instante da suposta colisão), ou seja, haverá [tex3]t_1=t_2[/tex3] em que ocorrerá a colisão. Com isso, a distância será [tex3]0[/tex3] . Graficamente, a reta e a parábola não podem se interceptar. No entanto, para analisar a colisão, busquei justamente a ocasião em que os carros se encontram e a reta e a parábola interceptam-se. Ou seja:

[tex3]S_A = S_B[/tex3]

Desse modo, obtive a equação do segundo grau. Se a equação tiver raízes reais, ocorre a interceptação, o que não queremos. A única condição que não há raízes reais é quando o [tex3]\Delta < 0[/tex3] . A ideia é um exercício dentro do outro! :mrgreen:
Última edição: Planck (Qui 16 Mai, 2019 16:16). Total de 1 vez.



Avatar do usuário
Planck
5 - Mestre
Mensagens: 1029
Registrado em: Sex 15 Fev, 2019 21:59
Última visita: 13-06-19
Agradeceu: 117
Agradeceram: 613
Mai 2019 16 16:32

Re: Condição necessária para dois carros não se colidirem

Mensagem não lida por Planck » Qui 16 Mai, 2019 16:32

Uma parábola que encontrei, para ilustrar a situação, é quando [tex3]V_a = V_b = 5 \, [m/s][/tex3] e a desaceleração de [tex3]A[/tex3] é [tex3]2 \, [m/s^2][/tex3] . O espaço entre os carros é de [tex3]-1[/tex3] , considerando o referencial em [tex3]B[/tex3] , ou seja, [tex3]A[/tex3] está atrás de [tex3]B[/tex3] .
geogebra-export (47).png
geogebra-export (47).png (53.57 KiB) Exibido 60 vezes
Nessa condições:

[tex3]\frac{a \cdot t^2}{2} + t \cdot (V_A - V_B) + d= 0[/tex3]

[tex3]-1 \cdot t^2 + \cancelto{0}{t \cdot (5 - 5)} -1= 0[/tex3]

[tex3]-t^2 = 1[/tex3]

[tex3]t^2 = -1[/tex3]

[tex3]t = i[/tex3]

A colisão ocorre em outra dimensão! :lol: :lol:
Última edição: Planck (Qui 16 Mai, 2019 16:41). Total de 1 vez.



Avatar do usuário
Autor do Tópico
miltonsermoud
Junior
Mensagens: 16
Registrado em: Seg 21 Mai, 2018 19:38
Última visita: 13-06-19
Agradeceu: 8
Agradeceram: 1
Mai 2019 16 17:49

Re: Condição necessária para dois carros não se colidirem

Mensagem não lida por miltonsermoud » Qui 16 Mai, 2019 17:49

Maravilha, Planck! Obrigado!




Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem Energia necessária para soldar duas placas de aço
    por IGFX » Seg 04 Jun, 2018 00:22 » em Física II
    1 Respostas
    221 Exibições
    Última msg por Auto Excluído (ID:20876)
    Seg 04 Jun, 2018 09:31
  • Nova mensagem (Austria) Condição de desigualdade
    por undefinied3 » Ter 16 Mai, 2017 21:28 » em Olimpíadas
    3 Respostas
    526 Exibições
    Última msg por sousóeu
    Ter 26 Set, 2017 12:17
  • Nova mensagem Condição de Existência
    por botelho » Dom 24 Set, 2017 12:05 » em Ensino Médio
    1 Respostas
    210 Exibições
    Última msg por jrneliodias
    Dom 24 Set, 2017 14:32
  • Nova mensagem Condição de Exsitência
    por Flavio2020 » Qua 27 Dez, 2017 15:40 » em Ensino Fundamental
    1 Respostas
    289 Exibições
    Última msg por undefinied3
    Qua 27 Dez, 2017 16:05
  • Nova mensagem Condição de Existência
    por Angelita » Seg 19 Mar, 2018 12:26 » em Ensino Médio
    1 Respostas
    187 Exibições
    Última msg por jomatlove
    Dom 01 Jul, 2018 16:35

Voltar para “Física I”