Física Ioscilações cilindro

Mecânica: Estática e Dinâmica
Avatar do usuário
Picolino
Junior
Mensagens: 13
Registrado em: 22 Dez 2021, 23:03
Última visita: 02-05-24
Mar 2024 29 16:41

oscilações cilindro

Mensagem por Picolino »

Boa tarde pessoal, beleza?

Tenho uma duvida quanto a tecnica de resolução de uma questão do livro problemas em fisica geral, Irodov.
Enunciado-> Um cilindro solido uniforme, de raio r, gira sem escorregar ao longo da superfície interna de um cilindro de raio R, realizando pequenas oscilações. Encontre seu período.
Resposta

Resposta do livro: T = [tex3]2\pi \sqrt{\frac{3(R-r)}{2g}}[/tex3]
Sendo bem sincero, eu olhei a solução do autor e não entendi absolutamente nada: desde o que ele fez, até a notação que ele usou.
Minha resolução foi a seguinte - >

Considerei dois momentos: 1) quando o cilindro encontra-se na posição mais alta da tragetória, E1 = mg(R-r)(1-cos[tex3]\theta [/tex3])
2) quando o cilindro se encontra na posição mais baixa da tragetória, E2 = 2[tex3]\frac{1}{2}[/tex3]IW²+[tex3]\frac{1}{2}[/tex3]mV²

escrevendo iW² como [tex3]\frac{1}{2}[/tex3]mV² e resolvendo o sistema encontrei V =2[tex3]\sqrt{\frac{g(R-r)(1-cos\theta )}{3}}[/tex3]

O meu entendimento é que parte da energia potencial gravitacional inicial foi usada parte no movimento de rotação e parte no movimento de translação, sendo V a velocidade de translação do cilindro. Segui imaginando uma situação semelhante, onde o mesmo cilindro parte da mesma altura e realiza o mesmo movimento (passando pelo ponto mais baixo com velocidade V), mas removendo o atrito.
Para que a energia se conserve: mg'(R-r)(1-cos[tex3]\theta [/tex3]) = [tex3]\frac{1}{2}[/tex3]m.(2[tex3]\sqrt{\frac{g(R-r)(1-cos\theta )}{3}}[/tex3])^2
resolvendo temos g' = [tex3]\frac{2}{3}[/tex3]g

agora resolvo normalmente: kx = [tex3]\frac{2}{3}mg[/tex3]sen[tex3]\theta [/tex3] <=> k = [tex3]\frac{2mg}{3(R-r)}[/tex3]
T = 2[tex3]\pi [/tex3][tex3]\sqrt{\frac{m}{k}}[/tex3], substituindo k
T = [tex3]2\pi \sqrt{\frac{3(R-r)}{2g}}[/tex3]

não sei se "enxergar" o problema como sendo a composição de movimentos, translacional e rotacional, e separar essas duas situações ajustando a gravidade, é uma saída correta e possivel.

Avatar do usuário
felix
2 - Nerd
Mensagens: 321
Registrado em: 12 Jul 2021, 17:05
Última visita: 12-07-24
Agradeceram: 24 vezes
Abr 2024 01 01:03

Re: oscilações cilindro

Mensagem por felix »

Amigo, só um comentário: você não pode desprezar o atrito, pois se assim fosse, o cilindro deslizaria. Ocorre que mesmo com o atrito a energia se conservará, em virtude desse atrito ser estático e portanto não realizar trabalho.

Responder
  • Tópicos Semelhantes
    Resp.
    Exibições
    Últ. msg
  • Oscilacoes Amortecidas
    por A4sk5gh » » em Física II
    0 Resp.
    839 Exibições
    Últ. msg por A4sk5gh
  • Pêndulo - Oscilações
    por rgsflv » » em Física II
    0 Resp.
    1194 Exibições
    Últ. msg por rgsflv
  • Oscilações mecânicas
    por EdsonRaso » » em Física I
    3 Resp.
    1621 Exibições
    Últ. msg por Catador
  • (Simulado ITA) - Oscilações
    por fernandosant » » em IME/ITA
    1 Resp.
    1798 Exibições
    Últ. msg por Tassandro
  • (EFOMM-2019) Oscilações
    por jvmago » » em IME/ITA
    3 Resp.
    5977 Exibições
    Últ. msg por Auto Excluído (ID:12031)

Voltar para “Física I”