Ensino SuperiorEquação da reta tangente Tópico resolvido

Poste aqui problemas sobre assuntos estudados no Ensino Superior (exceto os cobrados em concursos públicos e escolas militares).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
jaopimentinha
iniciante
Mensagens: 6
Registrado em: Ter 23 Fev, 2021 00:32
Última visita: 23-02-21
Fev 2021 23 04:12

Equação da reta tangente

Mensagem não lida por jaopimentinha »

2. Dada a função abaixo, marque a alternativa correta que contém a equação da reta tangente ao gráfico da função f no ponto (2,f(2)).
[tex3]f(x)=x^4[/tex3]

A) y=24x −32
B) y=32 x −24
C) y=24 x +32
D) y=32x + 24
E) y−16=32(x−2)

Ficaria grato se me ajudassem.




Avatar do usuário
petras
6 - Doutor
Mensagens: 3302
Registrado em: Qui 23 Jun, 2016 14:20
Última visita: 18-02-21
Fev 2021 23 08:02

Re: Equação da reta tangente

Mensagem não lida por petras »

jaopimentinha,

Equação de uma reta tangente a uma curva no ponto (a,f(a)): y - f(a) = f'(a)(x - a).

[tex3]f(2) = 2^4 = 16\\
f' (x) = 4x^3\rightarrow f'(2)=4.2^3=32\\
\therefore \boxed{\color{red}y-16=32(x-2)}[/tex3]




Avatar do usuário
JohnnyEN
2 - Nerd
Mensagens: 153
Registrado em: Dom 05 Jul, 2020 11:54
Última visita: 03-03-21
Fev 2021 23 08:12

Re: Equação da reta tangente

Mensagem não lida por JohnnyEN »

olá,

primeiro vamos encontrar o valor do coeficiente angular da reta tangente por [tex3]m=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}[/tex3]

substituindo o x por 2 temos [tex3]\lim_{h \rightarrow 0}\frac{f(2+h)-f(2)}{h}\rightarrow \lim_{h \rightarrow 0}\frac{(2+h)^{4}-2^{4}}{h}[/tex3]
[tex3]\lim_{h\rightarrow 0}\frac{2^{4}+4\cdot 2^{3}\cdot h+6\cdot 2^{2}\cdot h+4\cdot 2\cdot h^{3}+h^{4}-2^{4}}{h}[/tex3]
[tex3]\lim_{h \rightarrow 0}\frac{4\cdot 2^{3}\cdot h+6\cdot 2^{2}\cdot h+4\cdot 2\cdot h^{3}+h^{4}}{h}[/tex3]

dividindo td por h

[tex3]\lim_{h \rightarrow 0}({4\cdot 2^{3}\cdot h+6\cdot 2^{2}\cdot h+4\cdot 2\cdot h^{3}+h^{4}}{})[/tex3]

aplicando o limite


[tex3]m=4\cdot 8=32[/tex3]

conseguimos o coeficiente angular

agora para achar o valor do q na função afim [tex3]y=mx+q[/tex3]

vamos igualar ela igual a f(2) que é o ponto tangente em y

[tex3]2^{4}=32\cdot 2+q[/tex3]
[tex3]q=-48[/tex3]

assim a função da reta tangente é [tex3]y=32x-48[/tex3]

que é a mesma que a E
Última edição: JohnnyEN (Ter 23 Fev, 2021 11:06). Total de 1 vez.



Avatar do usuário
Autor do Tópico
jaopimentinha
iniciante
Mensagens: 6
Registrado em: Ter 23 Fev, 2021 00:32
Última visita: 23-02-21
Fev 2021 23 17:44

Re: Equação da reta tangente

Mensagem não lida por jaopimentinha »

Muito obrigado pessoal!




Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Ensino Superior”