Ensino Superiorcalculo de área utilizando integral Tópico resolvido

Poste aqui problemas sobre assuntos estudados no Ensino Superior (exceto os cobrados em concursos públicos e escolas militares).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
thetruth
Veterano
Mensagens: 333
Registrado em: Dom 02 Set, 2018 18:36
Última visita: 18-12-19
Dez 2019 07 19:04

calculo de área utilizando integral

Mensagem não lida por thetruth »

calcule a área da região limitada pelas curvas [tex3]f(x) =x^{2}\ e\ \ g(x) = x+2\ onde\ x\in[-2,4][/tex3]




Avatar do usuário
deOliveira
5 - Mestre
Mensagens: 604
Registrado em: Qui 31 Ago, 2017 08:06
Última visita: 07-04-20
Localização: São José dos Campos às vezes São Paulo
Dez 2019 07 20:12

Re: calculo de área utilizando integral

Mensagem não lida por deOliveira »

A área entre duas funções e a integral entre "a função de cima - a função de baixo", então temos que saber qual é a função de cima e qual é a de baixo (espero que não tenha ficado confuso kk)
[tex3]f(x)=x^2[/tex3] e [tex3]g(x)=x+2[/tex3]

[tex3]f(x)\geq g(x)[/tex3]
[tex3]x^2\geq x+2[/tex3]
[tex3]x^2-x-2\geq 0 \rightarrow (x+1)(x-2)\geq 0 \rightarrow x\in (-\infty ,-1][/tex3] ou [tex3]x \in[2,+\infty )[/tex3]
Então temos que no intervalo [tex3][-2,-1][/tex3] [tex3]f(x)\geq g(x)[/tex3]
[tex3][-1,2][/tex3] [tex3]g(x)\geq f(x)[/tex3]
[tex3][2,4][/tex3] [tex3]f(x)\geq g(x)[/tex3]
Então A=[tex3]\int\limits_{-2}^{-1}(f(x)-g(x))dx+\int\limits_{-1}^{2}(g(x)-f(x))dx+\int\limits_{2}^{4}(f(x)-g(x))dx[/tex3]
A=[tex3]\int\limits_{-2}^{-1}(x^2-x-2)dx+\int\limits_{-1}^{2}(-x^2+x+2)dx+\int\limits_{2}^{4}(x^2-x-2)dx[/tex3]
A=[tex3]\left( \frac{x^3}{3}-\frac{x^2}{2}-2x \right)_{-2}^{-1}+\left(\frac{-x^3}{3}+\frac{x^2}{2}+2x\right)_{-1}^2+ \left( \frac{x^3}{3}-\frac{x^2}{2}-2x \right)_{2}^{4}[/tex3]
A=[tex3]\frac{11}{6}+\frac{9}{2}+\frac{26}{3}=15[/tex3]


Espero que as contas estejam certas... :|:|

Esboço do gráfico para ajudar:
Anexos
WhatsApp Image 2019-12-07 at 20.10.14.jpeg
WhatsApp Image 2019-12-07 at 20.10.14.jpeg (38.41 KiB) Exibido 129 vezes



Matemática é melhor do que contato humano. '-'

Avatar do usuário
Autor do Tópico
thetruth
Veterano
Mensagens: 333
Registrado em: Dom 02 Set, 2018 18:36
Última visita: 18-12-19
Dez 2019 07 20:15

Re: calculo de área utilizando integral

Mensagem não lida por thetruth »

deOliveira escreveu:
Sáb 07 Dez, 2019 20:12
A área entre duas funções e a integral entre "a função de cima - a função de baixo", então temos que saber qual é a função de cima e qual é a de baixo (espero que não tenha ficado confuso kk)
[tex3]f(x)=x^2[/tex3] e [tex3]g(x)=x+2[/tex3]

[tex3]f(x)\geq g(x)[/tex3]
[tex3]x^2\geq x+2[/tex3]
[tex3]x^2-x-2\geq 0 \rightarrow (x+1)(x-2)\geq 0 \rightarrow x\in (-\infty ,-1][/tex3] ou [tex3]x \in[2,+\infty )[/tex3]
Então temos que no intervalo [tex3][-2,-1][/tex3] [tex3]f(x)\geq g(x)[/tex3]
[tex3][-1,2][/tex3] [tex3]g(x)\geq f(x)[/tex3]
[tex3][2,4][/tex3] [tex3]f(x)\geq g(x)[/tex3]
Então A=[tex3]\int\limits_{-2}^{-1}(f(x)-g(x))dx+\int\limits_{-1}^{2}(g(x)-f(x))dx+\int\limits_{2}^{4}(f(x)-g(x))dx[/tex3]
A=[tex3]\int\limits_{-2}^{-1}(x^2-x-2)dx+\int\limits_{-1}^{2}(-x^2+x+2)dx+\int\limits_{2}^{4}(x^2-x-2)dx[/tex3]
A=[tex3]\left( \frac{x^3}{3}-\frac{x^2}{2}-2x \right)_{-2}^{-1}+\left(\frac{-x^3}{3}+\frac{x^2}{2}+2x\right)_{-1}^2+ \left( \frac{x^3}{3}-\frac{x^2}{2}-2x \right)_{2}^{4}[/tex3]
A=[tex3]\frac{11}{6}+\frac{9}{2}+\frac{26}{3}=15[/tex3]


Espero que as contas estejam certas... :|:|

Esboço do gráfico para ajudar:
puts errei :(((, valeu demais
Última edição: thetruth (Sáb 07 Dez, 2019 20:17). Total de 2 vezes.



Avatar do usuário
Autor do Tópico
thetruth
Veterano
Mensagens: 333
Registrado em: Dom 02 Set, 2018 18:36
Última visita: 18-12-19
Dez 2019 07 20:34

Re: calculo de área utilizando integral

Mensagem não lida por thetruth »

poderia me explicar melhor essa parte dos pontos, achei um tanto quanto confuso :/
Última edição: thetruth (Sáb 07 Dez, 2019 20:47). Total de 1 vez.



Avatar do usuário
Autor do Tópico
thetruth
Veterano
Mensagens: 333
Registrado em: Dom 02 Set, 2018 18:36
Última visita: 18-12-19
Dez 2019 07 20:36

Re: calculo de área utilizando integral

Mensagem não lida por thetruth »

thetruth escreveu:
Sáb 07 Dez, 2019 20:15
[tex3]x^2-x-2\geq 0 \rightarrow (x+1)(x-2)\geq 0 \rightarrow x\in (-\infty ,-1][/tex3]
aqui o intervalo de x não sseria entre -1 e 0??



Avatar do usuário
deOliveira
5 - Mestre
Mensagens: 604
Registrado em: Qui 31 Ago, 2017 08:06
Última visita: 07-04-20
Localização: São José dos Campos às vezes São Paulo
Dez 2019 07 20:40

Re: calculo de área utilizando integral

Mensagem não lida por deOliveira »

thetruth escreveu:
Sáb 07 Dez, 2019 20:36
aqui o intervalo de x não sseria entre -1 e 0??
Não...
Fica fácil ver se você fizer um esboço de [tex3]x^2-x-2[/tex3]
Anexos
WhatsApp Image 2019-12-07 at 20.40.30.jpeg
WhatsApp Image 2019-12-07 at 20.40.30.jpeg (40.81 KiB) Exibido 119 vezes


Matemática é melhor do que contato humano. '-'

Avatar do usuário
deOliveira
5 - Mestre
Mensagens: 604
Registrado em: Qui 31 Ago, 2017 08:06
Última visita: 07-04-20
Localização: São José dos Campos às vezes São Paulo
Dez 2019 07 20:51

Re: calculo de área utilizando integral

Mensagem não lida por deOliveira »

thetruth escreveu:
Sáb 07 Dez, 2019 20:34
deOliveira escreveu:
Sáb 07 Dez, 2019 20:12
Então temos que no intervalo [−2,−1][−2,−1] f(x)≥g(x)f(x)≥g(x)
[−1,2][−1,2] g(x)≥f(x)g(x)≥f(x)
poderia me explicar melhor essa parte
Bem, vou tentar...
Com a inequação [tex3]x^2\geq x+2[/tex3] descobrimos que isso acontece quando [tex3]x \in(-\infty ,-1] [/tex3] ou [tex3]x\in [2,+\infty)[/tex3]
Então nesses dois intervalos temos que [tex3]f(x)\geq g(x)[/tex3]
Porém, só nos interessa o comportamento das funções no intervalo [-2,4]
Então teremos que no intervalo [-2,-1] [tex3]f(x)\geq g(x)[/tex3] (f está em cima, g está em baixo)
no intervalo [-1,2] [tex3]g(x)\geq f(x)[/tex3] (g está em cima, f está em baixo)
no intervalo [2,4] [tex3]f(x)\geq g(x)[/tex3] (f está em cima, g está em baixo)
E isso é a ideia de descobrir qual é a função que está em cima e qual está em baixo.
Talvez fique mais fácil pegar a intuição disso se você fizer um esboço dos gráficos ou usar algo como o Geogebra para observar como eles são, quem está em cima e tals.


Matemática é melhor do que contato humano. '-'

Avatar do usuário
Autor do Tópico
thetruth
Veterano
Mensagens: 333
Registrado em: Dom 02 Set, 2018 18:36
Última visita: 18-12-19
Dez 2019 07 22:28

Re: calculo de área utilizando integral

Mensagem não lida por thetruth »

deOliveira entendi!!. valeu pela ajuda

Última edição: thetruth (Sáb 07 Dez, 2019 22:56). Total de 1 vez.



Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Ensino Superior”