Ensino SuperiorImagem de uma função Tópico resolvido

Poste aqui problemas sobre assuntos estudados no Ensino Superior (exceto os cobrados em concursos públicos e escolas militares).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
Giii
iniciante
Mensagens: 5
Registrado em: Dom 01 Dez, 2019 20:14
Última visita: 03-12-19
Agradeceu: 5 vezes
Dez 2019 02 20:07

Imagem de uma função

Mensagem não lida por Giii » Seg 02 Dez, 2019 20:07

Seja [tex3]b \in R[/tex3] . Considere a função [tex3]f : R → R[/tex3] definida por [tex3]f(x) = 2e^x + b[/tex3] . O valor de [tex3]b[/tex3] para que a imagem de [tex3]f[/tex3] seja [tex3](1, +\infty)[/tex3] pertence ao intervalo:

a) (−∞, −9)
b) [−9, −5)
c) [−5, −1)
d) [−1, 5)
e) [5,+∞)

O que me confundiu foi o e, já que ele é um número quebrado e pela derivada, ele não muda.

Última edição: caju (Seg 02 Dez, 2019 20:33). Total de 1 vez.
Razão: colocar tex nas expressões matemáticas.



Avatar do usuário
Matheusrpb
3 - Destaque
Mensagens: 173
Registrado em: Sex 09 Mar, 2018 17:55
Última visita: 09-12-19
Agradeceu: 28 vezes
Agradeceram: 95 vezes
Dez 2019 02 21:30

Re: Imagem de uma função

Mensagem não lida por Matheusrpb » Seg 02 Dez, 2019 21:30

Giii, boa noite !

[tex3] f(x) = 2e^x +b[/tex3]

• O domínio da inversa de [tex3] f[/tex3] é igual à imagem de [tex3] f [/tex3] :

[tex3]y = 2e^x +b [/tex3]

[tex3] 2e^x = y-b [/tex3]

[tex3] e^x = \frac{y-b}2 [/tex3]

[tex3] x = \ln \(\frac{y-b}2\) [/tex3]

[tex3] f(x)^{-1}= \ln\(\frac{x-b}2\)[/tex3]

• Analisando a função logarítmica:

[tex3] \log_b^a=c [/tex3]

[tex3]a>0 [/tex3]

• Assim, o domínio de [tex3] f^{-1} [/tex3] é:

[tex3] \frac{x-b}2 > 0[/tex3]

[tex3] x-b > 0[/tex3]

[tex3] x > b[/tex3]

• Logo:

[tex3] D(f^{-1}) = (b;+\infty)[/tex3]

[tex3] Im(f) = (b;+\infty)[/tex3]

• Para os intervalos coincidirem:

[tex3] (b;+\infty) = (1;+\infty) [/tex3]

[tex3] \boxed{\boxed{b = 1}}[/tex3]

[tex3]\boxed{\boxed{b\in [-1; 5)}} [/tex3]



Por que você me deixa tão solto ? E se eu me interessar por alguém ?

Avatar do usuário
csmarcelo
6 - Doutor
Mensagens: 4425
Registrado em: Sex 22 Jun, 2012 22:03
Última visita: 08-12-19
Agradeceu: 356 vezes
Agradeceram: 2713 vezes
Dez 2019 02 21:49

Re: Imagem de uma função

Mensagem não lida por csmarcelo » Seg 02 Dez, 2019 21:49

De outra forma

Se [tex3]a>1[/tex3] , [tex3]a^x[/tex3] é crescente e [tex3]\lim_{x\rightarrow+\infty}a^x=+\infty[/tex3] .

Além disso,

1) se [tex3]a>1[/tex3] , então [tex3]\lim_{x\rightarrow-\infty}a^x=0[/tex3] .

2) [tex3]\lim_{x\rightarrow a}k=k[/tex3]

Como o limite da soma é a soma dos limites

[tex3]\lim_{x\rightarrow-\infty}a^x+b=\lim_{x\rightarrow-\infty}a^x+\lim_{x\rightarrow-\infty}b=0+b=b[/tex3]

Dessa forma, [tex3]a>1,b\in\mathbb{R}\rightarrow Im(a^x+b)=(b,+\infty)[/tex3] e a conclusão se torna óbvia.




Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Ensino Superior”