Olá, Comunidade!

Vocês devem ter notado que o site ficou um período fora do ar (do dia 26 até o dia 30 de maio de 2024).

Consegui recuperar tudo, e ainda fiz um UPGRADE no servidor! Agora estamos em um servidor dedicado no BRASIL!
Isso vai fazer com que o acesso fique mais rápido (espero 🙏)

Já arrumei os principais bugs que aparecem em uma atualização!
Mas, se você encontrar alguma coisa diferente, que não funciona direito, me envie uma MP avisando que eu arranjo um tempo pra arrumar!

Vamos crescer essa comunidade juntos 🥰

Grande abraço a todos,
Prof. Caju

Ensino Superior(Cálculo III) Taxa de Variação de Temperatura Tópico resolvido

Poste aqui problemas sobre assuntos estudados no Ensino Superior (exceto os cobrados em concursos públicos e escolas militares).

Moderador: [ Moderadores TTB ]

Avatar do usuário

Autor do Tópico
Isdioner
iniciante
Mensagens: 1
Registrado em: 06 Jan 2018, 10:18
Última visita: 24-04-19
Mar 2019 14 11:18

(Cálculo III) Taxa de Variação de Temperatura

Mensagem não lida por Isdioner »

Seja T(x, y, z) uma função diferenciável e suponha que ela representa a temperatura em graus Celsius em cada ponto de uma sala (as
dimensões x, y e z são medidas em metros). Suponha ainda que T possui as seguintes propriedades:

T(5, 4, 2) = 30°, ∂T/∂x (5, 4, 2) = 3°/m, ∂T/∂y (5, 4, 2) = −1°/m e ∂T/∂z (5, 4, 2) = 1°/m.

Uma mosca está voando por esta sala.
Se a posição da mosca em cada instante t (dado em segundos) for representada pelo caminho x = t² + 1, y = 2t, z = 10 − t³, determine a taxa de variação da temperatura em relação ao tempo neste caminho, no instante t = 2 segundos.

Editado pela última vez por Isdioner em 14 Mar 2019, 13:55, em um total de 2 vezes.
Avatar do usuário

AnthonyC
4 - Sabe Tudo
Mensagens: 964
Registrado em: 09 Fev 2018, 19:43
Última visita: 21-02-24
Agradeceu: 1 vez
Agradeceram: 2 vezes
Set 2020 11 22:57

Re: (Cálculo III) Taxa de Variação de Temperatura

Mensagem não lida por AnthonyC »

A taxa de variação da função é dada pela derivada direcional:
[tex3]D_{T,t}=\nabla T\cdot \hat u[/tex3]
Onde [tex3]\hat u[/tex3] é o vetor unitário na direção da variação.

Podemos ver que, no instante [tex3]t=2[/tex3] , a posição da mosca é:
[tex3]p(t)=(t^2+1,2t,10-t^3)[/tex3]
[tex3]p(2)=(5,4,2)[/tex3]

Esse é exatamente o ponto no qual sabemos as derivadas parciais. Portanto, o vetor gradiente no instante [tex3]t=2[/tex3] , será:
[tex3]\nabla T(x,y,z)=\({\partial T\over \partial x},{\partial T\over \partial y},{\partial T\over \partial z}\)[/tex3]
[tex3]\nabla T(5,4,2)=\(3,-1,1\)[/tex3]

Agora, só precisamos do vetor da direção. Como temos a função da posição, podemos descobrir a direção usando a derivada:
[tex3]p'(t)=\(2t,2,-3t^2\)[/tex3]
[tex3]\vec u=p'(2)=\(4,2,-12\)[/tex3]
Só precisamos tornar este vetor em um vetor unitário:
[tex3]||\vec u||=\sqrt{4^2+2^2+(-12)^2}[/tex3]
[tex3]||\vec u||=\sqrt{164}[/tex3]

[tex3]\hat u={\vec u\over ||\vec u||}[/tex3]
[tex3]\hat u=\({4\over \sqrt{164}},{2\over \sqrt{164}},-{12\over \sqrt{164}}\)[/tex3]

Finalmente, a taxa de variação de [tex3]T[/tex3] no instante [tex3]t=2[/tex3] é:
[tex3]D_{T,t}=\nabla T\cdot \hat u[/tex3]
[tex3]D_{T,t}=\(3,-1,1\)\cdot \({4\over \sqrt{164}},{2\over \sqrt{164}},-{12\over \sqrt{164}}\)[/tex3]
[tex3]D_{T,t}=-{2\over \sqrt{164}}[/tex3]
[tex3]D_{T,t}\approx-0,15~ ^\circ{\text{ C}\over\text{s}}[/tex3]

Editado pela última vez por AnthonyC em 11 Set 2020, 23:08, em um total de 1 vez.
[tex3]\color{YellowOrange}\textbf{Não importa o quanto se esforce ou evolua, você sempre estará abaixo do Sol}[/tex3]
[tex3]\textbf{Escanor}[/tex3]
Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última mensagem

Voltar para “Ensino Superior”