Ensino SuperiorCálculo 2 - Integral Dupla Tópico resolvido

Poste aqui problemas sobre assuntos estudados no Ensino Superior (exceto os cobrados em concursos públicos e escolas militares).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
Leleco075
sênior
Mensagens: 49
Registrado em: Sáb 25 Ago, 2018 00:14
Última visita: 14-02-19
Agradeceu: 41
Agradeceram: 1
Fev 2019 10 22:14

Cálculo 2 - Integral Dupla

Mensagem não lida por Leleco075 » Dom 10 Fev, 2019 22:14

Integral dupla

[tex3]\int\limits_{0}^{2}\int\limits_{0}^{\pi }r\sen^2 \theta \,d\theta dr[/tex3]
Resposta

[tex3]\pi [/tex3]

Última edição: caju (Dom 10 Fev, 2019 22:35). Total de 1 vez.
Razão: arrumar título.



Avatar do usuário
Cardoso1979
5 - Mestre
Mensagens: 867
Registrado em: Sex 05 Jan, 2018 19:45
Última visita: 11-03-19
Localização: Teresina- PI
Agradeceu: 93
Agradeceram: 408
Fev 2019 10 23:33

Re: Cálculo 2 - Integral Dupla

Mensagem não lida por Cardoso1979 » Dom 10 Fev, 2019 23:33

Observe

Solução:

[tex3]\int\limits_{0}^{2}\int\limits_{0}^{\pi }r\sen^2 \theta \ d\theta dr=[/tex3]

[tex3]r.\int\limits_{0}^{2}\int\limits_{0}^{\pi }\sen^2 \theta \,d\theta dr=[/tex3]

Obs. sen ² θ = [tex3]\frac{1}{2}-\frac{1}{2}cos (2\theta )[/tex3] .

[tex3]r.\int\limits_{0}^{2}\int\limits_{0}^{\pi }[\frac{1}{2}-\frac{1}{2}\cos ( \ 2\theta ) ]\ d\theta dr=[/tex3]

[tex3]r.\int\limits_{0}^{2}[\int\limits_{0}^{\pi }\frac{1}{2}-\frac{1}{2}\cos (2\theta ) \ d\theta ] \ dr=[/tex3]

[tex3]r.\int\limits_{0}^{2}[\frac{\theta }{2}-\frac{1}{4}\sen ( 2\theta )]_{0}^{π} \ dr=[/tex3]

[tex3]r.\int\limits_{0}^{2}[\frac{π}{2}-\frac{1}{4}\sen ( 2π )-\frac{0}{2}+\frac{1}{4}.sen (2.0)] \ dr=[/tex3]

[tex3]r.\int\limits_{0}^{2}(\frac{π}{2}-\frac{1}{4}.0-\frac{0}{2}+\frac{1}{4}.0) \ dr=[/tex3]

[tex3]\int\limits_{0}^{2}\frac{r.π}{2}\ dr=[/tex3]

[tex3][\frac{r^2π}{2.2}]_{0}^{2}=[\frac{r^2π}{4}]_{0}^{2}=\frac{2^2π}{4}-\frac{0^2.π}{4}=π[/tex3]

Portanto, [tex3]\int\limits_{0}^{2}\int\limits_{0}^{\pi }r\sen^2 \theta \,d\theta dr=π[/tex3] .



Bons estudos!




Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Ensino Superior”