Ensino Superiorderivada da função Tópico resolvido

Poste aqui problemas sobre assuntos estudados no Ensino Superior (exceto os cobrados em concursos públicos e escolas militares).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
thetruth
sênior
Mensagens: 35
Registrado em: Dom 02 Set, 2018 18:36
Última visita: 10-12-18
Agradeceu: 11
Agradeceram: 2
Dez 2018 07 15:00

derivada da função

Mensagem não lida por thetruth » Sex 07 Dez, 2018 15:00

[tex3]cos^{2}[/tex3] ([tex3]1-x^{2}[/tex3] )

fiquei em duvida nessa, alguém poderia me ajudar?

minha resposta deu 2[tex3]cos^{2}[/tex3] -x [tex3]\ast [/tex3] [tex3]sen^{2}[/tex3] x [tex3]\ast [/tex3] 2x

Editado pela última vez por thetruth em Sex 07 Dez, 2018 17:44, em um total de 4 vezes.



Avatar do usuário
AlguémMeHelp
Pleno
Mensagens: 69
Registrado em: Qui 06 Dez, 2018 17:08
Última visita: 14-12-18
Agradeceu: 14
Agradeceram: 22
Dez 2018 07 15:49

Re: derivada da função

Mensagem não lida por AlguémMeHelp » Sex 07 Dez, 2018 15:49

thetruth, Oi!! Td bem contigo?? Não sei se conhece o aplicativo MARAVILHOSO que calcula derivada e integral com passo a passo, e ainda vc pode tirar foto da equação ou da função sem precisar transcrevê-la ao aplicativo! É o "Photomath", espero que goste!

Bom, vamos passo a passo aqui tbm; precisará conhecer a regra do produto, regra de derivação em cadeia e a regra de derivação em polinômios (regra da potência), nesta ordem para este exercício!!

1) vou chama [tex3]\theta\:=\:1\:-\:x^2[/tex3] só por comodidade, ok?? agilizar na hora de escrever aqui.. então podemos reescrever a função que vc forneceu assim: [tex3]cos^2(\theta)\:=\:cos\theta\:\cdot \cos\theta[/tex3] , certo? só pra facilitar a aplicação da regra do produto (mas poderia ter feito a regra da potência direto, sem problemas!).

=>> [tex3]\frac{d[\cos\theta\cdot\cos\theta]}{dx}\:=\:\frac{d[\cos\theta]}{dx}\cdot \cos\theta\:+\:\cos\theta\cdot\frac{d[\cos\theta]}{b}\:=\:2\cdot\:\:\frac{d[\cos\theta]}{dx}\cdot \cos\theta[/tex3] . Como sabemos que o [tex3]\theta [/tex3] está em função de [tex3]x[/tex3] , essa próxima etapa da derivada será por meio da regra da cadeia, ok?

2)Então [tex3]\frac{d[\cos^{2}\theta]}{dx}\:=\:2\cdot\:\:\frac{d[\cos\theta]}{dx}\cdot \cos\theta\:\rightarrow \:\:\frac{d[\cos^{2}\theta]}{dx}\:=\:2\cdot(-\sen\theta)\cdot\frac{d[\theta]}{dx}\cdot \cos\theta\;(i)[/tex3] .

3) fazendo separadamente a derivada de teta: [tex3]\frac{d[\theta_{(x)}]}{dx}\:=\:\frac{d[1\:-\:x^{2}]}{dx}\;\;\rightarrow \;\;\frac{d[\theta_{(x)}]}{dx}\:=\:-2\cdot x\:(ii)[/tex3] (eis a aplicação da regra da potência);

4) aplicando [tex3](ii)[/tex3] em [tex3](i)[/tex3] :

[tex3]\frac{d[\cos^{2}\theta]}{dx}\:=\:2\cdot(-\sen\theta)\cdot\frac{d[\theta]}{dx}\cdot \cos\theta\;\;\rightarrow\;\frac{d[\cos^{2}\theta]}{dx}\:=\:2\cdot(-\sen\theta)\cdot (-2x)\cdot \cos\theta\;\;=\;\;2\cdot x\cdot(2\cdot \sen\theta\cdot \cos\theta) [/tex3] ; Observer que o termo destacado em parênteses corresponde a [tex3]\sen2\cdot \theta[/tex3] :D

[tex3]\rightarrow \;\;\frac{d[\cos^{2}\theta]}{dx}\:=\:2\cdot x\cdot \sen2\cdot\theta[/tex3] ; vamos desfazer a troca inicial de teta por x, ok??

[tex3]\therefore\;\;\frac{d[\cos^{2}(1\:-\:x^2)}{dx}\:=\:2\cdot x\cdot\sen(2-2x^2)[/tex3]

Espero que ajude!!




Avatar do usuário
Autor do Tópico
thetruth
sênior
Mensagens: 35
Registrado em: Dom 02 Set, 2018 18:36
Última visita: 10-12-18
Agradeceu: 11
Agradeceram: 2
Dez 2018 07 16:12

Re: derivada da função

Mensagem não lida por thetruth » Sex 07 Dez, 2018 16:12

AlguémMeHelp escreveu:
Sex 07 Dez, 2018 15:49
thetruth, Oi!! Td bem contigo?? Não sei se conhece o aplicativo MARAVILHOSO que calcula derivada e integral com passo a passo, e ainda vc pode tirar foto da equação ou da função sem precisar transcrevê-la ao aplicativo! É o "Photomath", espero que goste!

Bom, vamos passo a passo aqui tbm; precisará conhecer a regra do produto, regra de derivação em cadeia e a regra de derivação em polinômios (regra da potência), nesta ordem para este exercício!!

1) vou chama [tex3]\theta\:=\:1\:-\:x^2[/tex3] só por comodidade, ok?? agilizar na hora de escrever aqui.. então podemos reescrever a função que vc forneceu assim: [tex3]cos^2(\theta)\:=\:cos\theta\:\cdot \cos\theta[/tex3] , certo? só pra facilitar a aplicação da regra do produto (mas poderia ter feito a regra da potência direto, sem problemas!).

=>> [tex3]\frac{d[\cos\theta\cdot\cos\theta]}{dx}\:=\:\frac{d[\cos\theta]}{dx}\cdot \cos\theta\:+\:\cos\theta\cdot\frac{d[\cos\theta]}{b}\:=\:2\cdot\:\:\frac{d[\cos\theta]}{dx}\cdot \cos\theta[/tex3] . Como sabemos que o [tex3]\theta [/tex3] está em função de [tex3]x[/tex3] , essa próxima etapa da derivada será por meio da regra da cadeia, ok?

2)Então [tex3]\frac{d[\cos^{2}\theta]}{dx}\:=\:2\cdot\:\:\frac{d[\cos\theta]}{dx}\cdot \cos\theta\:\rightarrow \:\:\frac{d[\cos^{2}\theta]}{dx}\:=\:2\cdot(-\sen\theta)\cdot\frac{d[\theta]}{dx}\cdot \cos\theta\;(i)[/tex3] .

3) fazendo separadamente a derivada de teta: [tex3]\frac{d[\theta_{(x)}]}{dx}\:=\:\frac{d[1\:-\:x^{2}]}{dx}\;\;\rightarrow \;\;\frac{d[\theta_{(x)}]}{dx}\:=\:-2\cdot x\:(ii)[/tex3] (eis a aplicação da regra da potência);

4) aplicando [tex3](ii)[/tex3] em [tex3](i)[/tex3] :

[tex3]\frac{d[\cos^{2}\theta]}{dx}\:=\:2\cdot(-\sen\theta)\cdot\frac{d[\theta]}{dx}\cdot \cos\theta\;\;\rightarrow\;\frac{d[\cos^{2}\theta]}{dx}\:=\:2\cdot(-\sen\theta)\cdot (-2x)\cdot \cos\theta\;\;=\;\;2\cdot x\cdot(2\cdot \sen\theta\cdot \cos\theta) [/tex3] ; Observer que o termo destacado em parênteses corresponde a [tex3]\sen2\cdot \theta[/tex3] :D

[tex3]\rightarrow \;\;\frac{d[\cos^{2}\theta]}{dx}\:=\:2\cdot x\cdot \sen2\cdot\theta[/tex3] ; vamos desfazer a troca inicial de teta por x, ok??

[tex3]\therefore\;\;\frac{d[\cos^{2}(1\:-\:x^2)}{dx}\:=\:2\cdot x\cdot\sen(2-2x^2)[/tex3]

Espero que ajude!!
não sabia desse app não, irei testa-lo sim.

obrigado pela resposta, ajudou sim :D :D



Avatar do usuário
AlguémMeHelp
Pleno
Mensagens: 69
Registrado em: Qui 06 Dez, 2018 17:08
Última visita: 14-12-18
Agradeceu: 14
Agradeceram: 22
Dez 2018 07 17:04

Re: derivada da função

Mensagem não lida por AlguémMeHelp » Sex 07 Dez, 2018 17:04

thetruth, oi !! Se tu puder rapidão marcar na minha resposta como "solução", agradeceria dmsss <3




Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Ensino Superior”