Ensino SuperiorFunções contínuas- curso de análise real

Poste aqui problemas sobre assuntos estudados no Ensino Superior (exceto os cobrados em concursos públicos e escolas militares).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
julianamelo
iniciante
Mensagens: 8
Registrado em: Sex 23 Mar, 2018 10:47
Última visita: 26-04-21
Abr 2018 09 13:17

Funções contínuas- curso de análise real

Mensagem não lida por julianamelo »

Alguém me ajuda?
Determine todas as funções contínuas f : R → R tais que f(x + y) = f(x)f(y) para quaisquer x, y reais.




Auto Excluído (ID:12031)
6 - Doutor
Última visita: 31-12-69
Abr 2018 09 20:30

Re: Funções contínuas- curso de análise real

Mensagem não lida por Auto Excluído (ID:12031) »

coloque [tex3]x=0[/tex3] e teremos [tex3]f(y) = f(0) f(y) \,\,\,\, \forall y \in \mathbb R[/tex3]
em particular [tex3]f(0) = f(0)^2 \iff f(0) =0 \,\,\, \text{ou}\,\, f(0)=1[/tex3]
se [tex3]f(0) = 0[/tex3] então [tex3]f(y) = 0 \,\,\, \forall y \in \mathbb R[/tex3] e a função é a função nula. A qual, de fato é contínua e satisfaz a equação.

A outra opção é [tex3]f(0) =1[/tex3] .
Repare agora que [tex3]f(x) =f(\frac x2 + \frac x2) = f(\frac x2)^2 \geq 0[/tex3] logo [tex3]f(x)[/tex3] nunca é negativa.

Seja então [tex3]f(1)= a >0[/tex3]

mostra-se por indução que [tex3]f(n) = a^n[/tex3] para todo [tex3]n[/tex3] natural:

de fato para [tex3]n=1[/tex3] temos [tex3]f(1)=a[/tex3]

supondo que [tex3]f(n) =a^n[/tex3] para algum [tex3]n[/tex3] natural então [tex3]f(n+1) = f(1) f(n) = a \cdot a^n = a^{n+1}[/tex3] cqd.

logo [tex3]f(n) = a^n[/tex3] quando [tex3]n \in \mathbb N[/tex3]

agora prova-se por indução que [tex3]f( \sum_{i=1}^n x_i ) = \prod_{i=1}^nf(x_i)[/tex3]
de fato para [tex3]n=1[/tex3] temos [tex3]f(x_1) = f(x_1)[/tex3]
supondo [tex3]f( \sum_{i=1}^n x_i ) = \prod_{i=1}^nf(x_i)[/tex3] então [tex3]f( \sum_{i=1}^{n+1} x_i ) =f( \sum_{i=1}^{n} x_i + x_{n+1} ) = f(x_{n+1}) \cdot \prod_{i=1}^nf(x_i) = \prod_{i=1}^{n+1}f(x_i) [/tex3]
então coloque [tex3]n[/tex3] e [tex3]x_i = \frac 1n[/tex3] e teremos [tex3]f(\frac n n) = f(\frac 1n)^n \implies f(\frac 1n) = a^{\frac1n][/tex3] para todo [tex3]n[/tex3] natural.
Colocando [tex3]n =p[/tex3] e [tex3]x_i = \frac1q[/tex3] e terá [tex3]f(\frac p q) = a^{\frac pq}[/tex3] ou seja [tex3]f(x) = a^x[/tex3] se [tex3]x[/tex3] for racional.
Para extrapolar para os reais é fácil tome um número real qualquer [tex3]r[/tex3] . Ele é limite de uma sequência de racionais arbitrária [tex3]q_n[/tex3] . Como [tex3]f[/tex3] é contínua então [tex3]f(r) = f(\lim q_n) = \lim f(q_n) = \lim a^{q_n} = a^r[/tex3]

logo [tex3]f(x) =a^x[/tex3] para todo x real




Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Ensino Superior”