Ensino SuperiorTeoria dos Números Tópico resolvido

Poste aqui problemas sobre assuntos estudados no Ensino Superior (exceto os cobrados em concursos públicos e escolas militares).

Moderador: [ Moderadores TTB ]

Avatar do usuário

Autor do Tópico
Idocrase
1 - Trainee
Mensagens: 346
Registrado em: 10 Set 2021, 13:27
Última visita: 01-05-24
Abr 2024 18 16:49

Teoria dos Números

Mensagem não lida por Idocrase »

Encontre todas as soluções em inteiros positivos de [tex3]x^2+2y^2=3z^2[/tex3]


FelipeMartin
4 - Sabe Tudo
Mensagens: 2223
Registrado em: 04 Jul 2020, 10:47
Última visita: 26-04-24
Agradeceu: 20 vezes
Agradeceram: 7 vezes
Abr 2024 18 17:25

Re: Teoria dos Números

Mensagem não lida por FelipeMartin »

seja [tex3]d[/tex3] o mdc de [tex3]x[/tex3] e [tex3]y[/tex3] . Veja que [tex3]x = dx'[/tex3] e [tex3]y = dy'[/tex3]

[tex3]3z^2 = d^2(x'^2+2y'^2)[/tex3] , ou seja, [tex3]d^2[/tex3] dividirá [tex3]3z^2[/tex3] , a única forma de [tex3]d[/tex3] não dividir [tex3]z[/tex3] é se [tex3]d^2[/tex3] dividir [tex3]3[/tex3] , mas, tirando [tex3]d=1[/tex3] , [tex3]d^2 >3[/tex3] , logo, [tex3]d \vert z^2[/tex3] . Dividamos o problema em dois casos:

[tex3]d \neq 3[/tex3] :

implica que [tex3]d \vert z[/tex3] , então, podemos supor sem perder a generalidade que o mdc entre [tex3]x[/tex3] e [tex3]y[/tex3] é [tex3]1[/tex3] , pois todas as outras soluções são obtidas multiplicando a terna [tex3](x,y,z)[/tex3] por um número racional relativamente arbitrário.
Suponhamos neste caso que [tex3]x[/tex3] seja par. Então, [tex3]z[/tex3] será par e [tex3]y[/tex3] será ímpar. Neste casso, a nossa equação [tex3]\mod 4[/tex3] dará: [tex3]0 + 2 \cdot 1 = 0 \mod 4 \iff 2 \equiv 0 \mod 4[/tex3] absurdo. Nestes termos, [tex3]x[/tex3] não pode ser par.

Se [tex3]x[/tex3] for ímpar, [tex3]z[/tex3] será ímpar. Se [tex3]y[/tex3] for par, a nossa expressão [tex3]\mod 4[/tex3] vai dar: [tex3]1 + 0 = 3 \mod 4[/tex3] o que também é um absurdo. Então devemos ter, [tex3]x,y,z[/tex3] todos ímpares.

Logo, se o [tex3]\mdc (x,y) \neq 3[/tex3] , não teremos soluções.

[tex3]d = 3[/tex3]

[tex3]x = 3x'[/tex3] e [tex3]y = 3y'[/tex3] isso implica que [tex3]9x'^2 + 18y'^2 = 3z^2 \iff z^2 = 3x'^2 + 6y'^2 = 3(x'^2 + 2y'^2)[/tex3] , ou seja, [tex3]3 \vert z^2 \implies 3 \vert z[/tex3] . Temos um problema. Imaginemos que tenhamos uma solução da forma [tex3](x,y,z)[/tex3] com [tex3]x = 3x', y=3y'[/tex3] , então, teremos [tex3]z =3z'[/tex3] com [tex3]3z'^2 = x'^2 + 2y'^2[/tex3] o que é a nossa equação original, mas, """""""sabemos que [tex3](x',y',z') \neq 3[/tex3] , logo, não existe essa terna pois recaímos no caso anterior [tex3]d \ne 3[/tex3] .""""""""""

Eis a sua resposta: não temos nenhuma solução pra essa equação além, é claro, de [tex3](x,y,z) = (0,0,0)[/tex3]

encontrei um erro no meu argumento e editei a resposta

Última edição: FelipeMartin (18 Abr 2024, 17:34). Total de 1 vez.
φως εσύ και καρδιά μου εγώ πόσο σ' αγαπώ.
Avatar do usuário

Autor do Tópico
Idocrase
1 - Trainee
Mensagens: 346
Registrado em: 10 Set 2021, 13:27
Última visita: 01-05-24
Abr 2024 18 18:33

Re: Teoria dos Números

Mensagem não lida por Idocrase »

FelipeMartin escreveu: 18 Abr 2024, 17:25 seja [tex3]d[/tex3] o mdc de [tex3]x[/tex3] e [tex3]y[/tex3] . Veja que [tex3]x = dx'[/tex3] e [tex3]y = dy'[/tex3]

[tex3]3z^2 = d^2(x'^2+2y'^2)[/tex3] , ou seja, [tex3]d^2[/tex3] dividirá [tex3]3z^2[/tex3] , a única forma de [tex3]d[/tex3] não dividir [tex3]z[/tex3] é se [tex3]d^2[/tex3] dividir [tex3]3[/tex3] , mas, tirando [tex3]d=1[/tex3] , [tex3]d^2 >3[/tex3] , logo, [tex3]d \vert z^2[/tex3] . Dividamos o problema em dois casos:

[tex3]d \neq 3[/tex3] :

implica que [tex3]d \vert z[/tex3] , então, podemos supor sem perder a generalidade que o mdc entre [tex3]x[/tex3] e [tex3]y[/tex3] é [tex3]1[/tex3] , pois todas as outras soluções são obtidas multiplicando a terna [tex3](x,y,z)[/tex3] por um número racional relativamente arbitrário.
Suponhamos neste caso que [tex3]x[/tex3] seja par. Então, [tex3]z[/tex3] será par e [tex3]y[/tex3] será ímpar. Neste casso, a nossa equação [tex3]\mod 4[/tex3] dará: [tex3]0 + 2 \cdot 1 = 0 \mod 4 \iff 2 \equiv 0 \mod 4[/tex3] absurdo. Nestes termos, [tex3]x[/tex3] não pode ser par.

Se [tex3]x[/tex3] for ímpar, [tex3]z[/tex3] será ímpar. Se [tex3]y[/tex3] for par, a nossa expressão [tex3]\mod 4[/tex3] vai dar: [tex3]1 + 0 = 3 \mod 4[/tex3] o que também é um absurdo. Então devemos ter, [tex3]x,y,z[/tex3] todos ímpares.

Logo, se o [tex3]\mdc (x,y) \neq 3[/tex3] , não teremos soluções.

[tex3]d = 3[/tex3]

[tex3]x = 3x'[/tex3] e [tex3]y = 3y'[/tex3] isso implica que [tex3]9x'^2 + 18y'^2 = 3z^2 \iff z^2 = 3x'^2 + 6y'^2 = 3(x'^2 + 2y'^2)[/tex3] , ou seja, [tex3]3 \vert z^2 \implies 3 \vert z[/tex3] . Temos um problema. Imaginemos que tenhamos uma solução da forma [tex3](x,y,z)[/tex3] com [tex3]x = 3x', y=3y'[/tex3] , então, teremos [tex3]z =3z'[/tex3] com [tex3]3z'^2 = x'^2 + 2y'^2[/tex3] o que é a nossa equação original, mas, """""""sabemos que [tex3](x',y',z') \neq 3[/tex3] , logo, não existe essa terna pois recaímos no caso anterior [tex3]d \ne 3[/tex3] .""""""""""

Eis a sua resposta: não temos nenhuma solução pra essa equação além, é claro, de [tex3](x,y,z) = (0,0,0)[/tex3]

encontrei um erro no meu argumento e editei a resposta
Entendi, muito obrigado. 😄

FelipeMartin
4 - Sabe Tudo
Mensagens: 2223
Registrado em: 04 Jul 2020, 10:47
Última visita: 26-04-24
Agradeceu: 20 vezes
Agradeceram: 7 vezes
Abr 2024 18 21:25

Re: Teoria dos Números

Mensagem não lida por FelipeMartin »

como vc entendeu, se eu não terminei? kkkkkkk
φως εσύ και καρδιά μου εγώ πόσο σ' αγαπώ.

FelipeMartin
4 - Sabe Tudo
Mensagens: 2223
Registrado em: 04 Jul 2020, 10:47
Última visita: 26-04-24
Agradeceu: 20 vezes
Agradeceram: 7 vezes
Abr 2024 18 21:26

Re: Teoria dos Números

Mensagem não lida por FelipeMartin »

se [tex3](x,y,z)[/tex3] forem ímpares, temos o [tex3](1,1,1)[/tex3] por exemplo
φως εσύ και καρδιά μου εγώ πόσο σ' αγαπώ.

FelipeMartin
4 - Sabe Tudo
Mensagens: 2223
Registrado em: 04 Jul 2020, 10:47
Última visita: 26-04-24
Agradeceu: 20 vezes
Agradeceram: 7 vezes
Abr 2024 18 22:05

Re: Teoria dos Números

Mensagem não lida por FelipeMartin »

ok, ignoremos o caso [tex3](0,0,0)[/tex3] , logo, [tex3]z > 0[/tex3] e podemos definir [tex3]a = \frac xz[/tex3] e [tex3]b = \frac yz[/tex3] .

Queremos:

[tex3]a^2 + 2b^2 = 3[/tex3]

note que temos uma solução evidente: [tex3]a = 1,b=1[/tex3] . Queremos saber se a elipse [tex3]a^2+2b^2=3[/tex3] admite outros pontos racionais. Se ela admitir, pensemos na reta que une esse segundo ponto com [tex3](1,1)[/tex3] . Esta reta terá coeficiente angular de [tex3]m = \frac{b-1}{a-1}[/tex3] , que será racional.

Veja que [tex3]a = 1 + \frac{b-1}m[/tex3] .

[tex3]1 + \frac2m(b-1) + (\frac{b-1}m)^2 + 2b^2 = 3[/tex3] (se [tex3]m=0[/tex3] , teremos [tex3]b=1[/tex3] )
[tex3]2(b+1)m^2+b + 2m-1=0 \implies b(2m^2+1) + 2m^2+2m-1=0 \implies b = \frac{1-2m-2m^2}{2m^2+1}[/tex3]
[tex3]a = 1 + \frac{b-1}m = 1 + \frac{-2-4m}{2m^2+1} = \frac{2m^2-4m-1}{2m^2+1}[/tex3]

Eis ai então a construção das soluções inteiras do seu sistema. Pegue um [tex3]m[/tex3] racional qualquer diferente de zero e aplique nas expressões para [tex3]a[/tex3] e [tex3]b[/tex3] . Você obterá um par de racionais [tex3]a,b[/tex3] e quando você multiplicá-los pelo MMC de seus denominadores, obterá uma solução [tex3](x,y,z)[/tex3] pra sua equação. Restrinja [tex3]m[/tex3] para que [tex3]a[/tex3] e [tex3]b[/tex3] sejam positivos.
Última edição: FelipeMartin (18 Abr 2024, 23:14). Total de 1 vez.
φως εσύ και καρδιά μου εγώ πόσο σ' αγαπώ.
Avatar do usuário

Autor do Tópico
Idocrase
1 - Trainee
Mensagens: 346
Registrado em: 10 Set 2021, 13:27
Última visita: 01-05-24
Abr 2024 18 23:19

Re: Teoria dos Números

Mensagem não lida por Idocrase »

FelipeMartin escreveu: 18 Abr 2024, 21:25 como vc entendeu, se eu não terminei? kkkkkkk
Aah eu não tinha lido ali no final.

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Ensino Superior”