Solução problema 151
a) [tex3]x^4-5x-6=0[/tex3]
[tex3]p[/tex3] é divisor de 6 [tex3]\Rightarrow p \in \{-1,1,-2,2,-3,3\}[/tex3]
[tex3]q[/tex3] é divisor de 1 [tex3]\Rightarrow q \in \{-1,1\}[/tex3]
[tex3]\frac{p}{q} \in \{-1,1,-2,2,-3,3\}[/tex3]
Testando os valores acima, vemos que duas das raízes dessa equação é [tex3]x=-1[/tex3] e [tex3]x=2[/tex3]
Assim, podemos reescrever essa equação como:
[tex3]x^4-5x-6=0 \Longleftrightarrow (x+1)(x-2)p(x)=0[/tex3], onde [tex3]p(x)[/tex3] pode ser calculada pelo método da chave:
[tex3]x^4-5x-6=(x^2-x-2)(x^2+x+3)=0[/tex3]
As outras duas raízes são obtidas calculando [tex3]x^2+x+3=0[/tex3]:
[tex3]x=\frac{-1 \pm \sqrt{1-4.3}}{2} \Rightarrow x=\frac{-1 \pm i \sqrt{11}}{2}[/tex3]
[tex3]\Delta =-3x_1^2-3x_2^2-2x_1x_3=-2x_1^2-2x_2^2-x_1^2-x_2^2-2x_1x_2[/tex3]
Assim, as raízes são:
[tex3]\left(-1,\,2,\, \frac{1+ i\sqrt{11}}{2},\, \frac{1-i \sqrt{11}}{2}\right)[/tex3]
b) Temos os seguintes casos a considerar:
[tex3]a=0, b \neq 0[/tex3]; [tex3]a\neq 0, b=0[/tex3], [tex3]a \neq 0, b \neq 0[/tex3]
(i) [tex3]a=0, b \neq 0[/tex3]:
[tex3]x^4+b=0 \Rightarrow x^4=-b[/tex3]. Se [tex3]b>0[/tex3] as quatro raízes será complexas, e se [tex3]b<0[/tex3], temos que duas raízes serão complexas.
(ii) [tex3]a \neq 0, b=0[/tex3]
[tex3]x^4+ax=0 \Rightarrow x(x^3+a)=0[/tex3]. Uma raiz é [tex3]x=0[/tex3], enquanto as duas restantes serão obtidas fazendo [tex3]x^3+a=0 \Rightarrow x^3=-a[/tex3]. Nesse caso, para todo a real a equação terá duas raízes complexas.
(iii) [tex3]a \neq 0, b \neq 0[/tex3]
Vamos supor que duas raízes sejam reais. Sejam [tex3]x_1, x_2[/tex3] essas raízes. Pelo algoritmo de Briot-Ruffini, podemos escrever:
[tex3](x-x_1)(x-x_2)(x^2+x(x_1+x_2)+x_1^2+x_1x_2+x_2^2)=x^4+ax+b=0[/tex3]
Para obter as demais raízes, basta fazer [tex3]x^2+x(x_1+x_2)+x_1^2+x_1x_2+x_2^2=0[/tex3]
[tex3]\Delta = (x_1+x_2)^2-4.(x_1^2+x_1x_2+x_2^2)=x_1^2+x_2^2+2x_1x_2-4x_1^2-4x_1x_2-4x_2^2[/tex3]
[tex3]\Delta =-2x_1^2-2x_2^2-x_1^2-x_2^2-2x_1x_2=-2(x_1^2+x_2^2)-(x_1+x_2)^2 <0[/tex3]
Fica assim provado que para a equação [tex3]x^4+ax+b=0[/tex3] todas as raízes não poderão ser real. Pelo menos duas deverão ser complexas.
---------------------------------------------------------------------
Problema 152
[Unicamp-2001] Os lados de um triângulo têm, como medidas, números inteiros ímpares consecutivos cuja soma é 15.
a) Quais são esses números?
b) Calcule a medida do maior ângulo desse triângulo.
c) Sendo a e b os outros ângulos desse triângulo, mostre que [tex3]\sin^2 a-\sin^2b<\frac{1}{4}[/tex3]