Página 1 de 1

(UnB) MCU

Enviado: Dom 20 Mar, 2016 09:09
por stefanycastro
Considere que as rodas dentadas que formam a engrenagem ilustrada na figura acima estejam colocadas em eixos, que a roda A
tenha 44 dentes tanto na parte externa quanto na parte interna, que as rodas B e C tenham 22 dentes cada uma e que o número de dentes de cada uma das rodas D, E e F seja igual a 11.
sz.png
sz.png (41.17 KiB) Exibido 1184 vezes
(1) Considere que, na engrenagem ilustrada, a roda B tenha sido substituída por uma roda G com 24 dentes com tamanhos
compatíveis aos da roda A. Considere, ainda, que, em determinado instante t0, a engrenagem tenha sido colocada em
movimento. Nessas condições, a quantidade de voltas completas que a roda A deverá girar até que todas as rodas
estejam com os dentes na posição em que estavam no instante t0 é
A) inferior a 30.
B) superior a 30 e inferior a 60.
C) superior a 60 e inferior a 90.
D) superior a 90.
Resposta

A

Re: (UnB) MCU

Enviado: Dom 15 Mar, 2020 19:16
por andrezza
Alguém poderia ajudar nessa?
Também outro item da questão:
2- É possível inferir que as rodas B e C têm o mesmo diâmetro
Resposta

Errado

Re: (UnB) MCU

Enviado: Dom 15 Mar, 2020 19:51
por Planck
Antes tarde do que nunca, stefanycastro e andrezza!

Bom, a questão assusta no começo. Como a roda G possui 24 dentes e a roda A possui 44 dentes, elas vão completar voltas em tempos diferentes. Contudo, como podemos definir a quantidade de voltas completas para que as rodas estejam todas em suas posições originais? A saída que vi foi a mesma utilizada em problemas que sobre repetição de eventos: em quanto tempo os semáforos abrirão ao novamente juntos? Em quanto tempo os remédios serão tomados novamente juntos? Ou seja, vamos utilizar o [tex3]m.m.c. (44,24)[/tex3] . Com isso obtemos o valor de [tex3]264[/tex3] voltas. Mas, esse é o valor para o conjunto inteiro. A roda A dará [tex3]\frac {264}{44} = 6[/tex3] voltas completas nesse período.

Para o segundo item, ainda estou analisando. Mais tarde coloco algo.