Questões PerdidasFunção

Aqui ficará uma coletânea de questões antigas, com mais de 1 ano, que não foram respondidas ainda. Não é possível postar novas questões nesse fórum, apenas é possível resolver as que forem movidas para cá pelos moderadores.

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
RICARDOLINS
Junior
Mensagens: 10
Registrado em: Ter 03 Nov, 2015 12:51
Última visita: 04-01-16
Nov 2015 12 17:48

Função

Mensagem não lida por RICARDOLINS »

Defina o domínio "D" e a imagem "IM" da função [tex3]x=\sqrt{x+1}+3[/tex3] .

Última edição: caju (Qua 05 Fev, 2020 11:45). Total de 3 vezes.
Razão: tex --> tex3



Avatar do usuário
Zhadnyy
4 - Sabe Tudo
Mensagens: 1098
Registrado em: Sex 01 Nov, 2019 11:04
Última visita: 22-02-21
Contato:
Mar 2020 26 10:06

Re: Função

Mensagem não lida por Zhadnyy »

Olá
Achei a equação consideravelmente estranha, todavia vou tentar ajudar desse jeito mesmo.
Supondo que estamos trabalhando no conjunto dos reais, sabemos que x deve ser maior ou igual a -1.
Isso já restringe um pouco os valores que podemos pesquisar.

O próximo passo é elevar ambos os lados ao quadrado
(x+3) ^2 = x+1
Com isso conseguimos chegar numa equação do segundo grau na variável x.
Dessa forma, encontramos dois x possíveis.
Eu usei a calculadora, mas pode ser feito pelo método da aproximação das raízes quadradas de um número:
Dos dois x possíveis (que encontramos por Bhaskara), percebemos que apenas um deles é útil. Nesse caso, o x é

[tex3]x = \left(\frac{7+\sqrt{17}}{2}\right)[/tex3]

Esse é o único valor de x que verifica essa equação dada. Desse modo, esse é o nosso domínio. Não podemos colocar outros valores de x pois chegaremos num absurdo matemático (por exemplo afirmar que 0 = 1 ou 3 = 18).

Então, respondemos a primeira pergunta: [tex3]D= \left(\frac{7+\sqrt{17}}{2}\right)[/tex3]

Já na imagem da nossa função, buscamos a definição de "imagem de uma função":
Se um elemento x [tex3]\in [/tex3] A estiver associado a um elemento y [tex3]\in [/tex3] B, dizemos que y é a imagem de x (indica-se y=f(x) e lê-se “y é igual a f de x”).
Por essa definição, vemos que a imagem está relacionada com os pares ordenados (x,y).
Todavia, nossa função é constante para todo y, ou seja, para todo y que eu imaginar, eu só posso colocar o mesmo x.
Dessa forma, o gráfico da nossa função é uma reta perpendicular ao eixo das abscissas (eixo x), e que corta o eixo no ponto que temos no domínio.
Caso queira confirmar, basta plotar a equação no geogebra.

Esse pensamento fica um pouco estranho pois temos que pensar numa expressão da forma
0y + x = (x+1)^-2 + 3
Se vermos isso, que é a definição real de uma função de duas variáveis (o que nos foi dado só tinha uma variável!), podemos ver que para todo y que eu colocar, só posso ter um x.
Por ex.:
0.4000 + x = (x+1)^-2 + 3 : veremos que o valor de x que verifica isso é o mesmo!!!

Desse modo, como nossa imagem são todos os pontos (x,y) que nossa função atinge, enxergamos que nossa imagem é todo o conjunto dos reais. Todo real que você colocar em y irá resultar no x que temos no domínio. Basta pensar nesse exemplo dado acima.

Com isso terminamos o problema
[tex3]I=\mathbb{R}[/tex3]




Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Questões Perdidas”