Ensino FundamentalCalcular Tópico resolvido

Problemas sobre assuntos estudados no Ensino Fundamental devem ser postados aqui (exceto problemas de Vestibulares).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
botelho
Imperial
Mensagens: 513
Registrado em: Ter 27 Jun, 2017 19:38
Última visita: 08-10-20
Dez 2017 20 20:28

Calcular

Mensagem não lida por botelho »

Se a+b=1; ab=1. Calcule o valor reduzido de E. E=[tex3]a^{2048}[/tex3] +[tex3]b^{2048}[/tex3] +[tex3]\frac{1}{a^{2048}}[/tex3] +[tex3]\frac{1}{b^{2048}}[/tex3]
a)-2
b)-1
c)0
d)1
e)2




Avatar do usuário
jomatlove
4 - Sabe Tudo
Mensagens: 1024
Registrado em: Qui 05 Jun, 2014 19:38
Última visita: 03-12-20
Localização: Arapiraca-AL
Dez 2017 21 14:20

Re: Calcular

Mensagem não lida por jomatlove »

Resolução:
Sejam a e b raízes de uma equação do 2° grau,logo:
[tex3]x^{2}-(a+b)x+ab=0[/tex3]
[tex3]x^{2}-x+1=0[/tex3]
[tex3]x^{2}+1=x[/tex3]
[tex3]x+\frac{1}{x}=1[/tex3]
Elevando ao quadrado:
[tex3](x+\frac{1}{x})^{2}=1^{2}[/tex3]
[tex3]x^{2}+2.\cancel{x}.\frac{1}{\cancel{x}}+\frac{1}{x^{2}}=1[/tex3]
[tex3]x^{2}+\frac{1}{x^{2}}=-1[/tex3]
De novo ao quadrado:
[tex3]x^{4}+2+\frac{1}{x^{4}}=1[/tex3]
[tex3]x^{4}+\frac{1}{x^{4}}=-1[/tex3]
Assim,concluímos que para todo [tex3]n=2^{k}[/tex3] ,k pertencente ao naturais e [tex3]k\geq 2[/tex3]
[tex3]x^{n}+\frac{1}{x^{n}}=-1[/tex3]
Daí,resulta:
[tex3]E=(a^{2048}+\frac{1}{a^{2048}})+(b^{2048}+\frac{1}{b^{2048}})[/tex3]
[tex3]E=(-1)+(-1)=-2[/tex3]

[tex3]\therefore \boxed{E=-2}[/tex3]
:)

Última edição: jomatlove (Qui 21 Dez, 2017 16:21). Total de 2 vezes.


Imagination is more important than
knowledge(Albert Einstein)

Avatar do usuário
Hanon
1 - Trainee
Mensagens: 430
Registrado em: Sáb 13 Mai, 2017 00:28
Última visita: 02-12-20
Localização: São Luis - Ma
Dez 2017 21 15:05

Re: Calcular

Mensagem não lida por Hanon »

Veja que:

[tex3]x^{4}+\frac{1}{x^{4}}=-1[/tex3]
[tex3](x^{4}+\frac{1}{x^{4}})\cdot (x^{2}+\frac{1}{x^{2}})=-1\cdot (x^{2}+\frac{1}{x^{2}})[/tex3]
[tex3]x^{6}+x^{2}+\frac{1}{x^{2}}+\frac{1}{x^{6}}=(-1)\cdot (-1)[/tex3]
[tex3]x^{6}-1+\frac{1}{x^{6}}=1[/tex3]
[tex3]x^{6}+\frac{1}{x^{6}}=2[/tex3]

Logo, não é válido:
jomatlove escreveu:
Qui 21 Dez, 2017 14:20
Assim,concluímos que para todo n natural e par,temos:
[tex3]x^{n}+\frac{1}{x^{n}}=-1[/tex3]



Avatar do usuário
jomatlove
4 - Sabe Tudo
Mensagens: 1024
Registrado em: Qui 05 Jun, 2014 19:38
Última visita: 03-12-20
Localização: Arapiraca-AL
Dez 2017 21 15:25

Re: Calcular

Mensagem não lida por jomatlove »

Hanon escreveu:
Qui 21 Dez, 2017 15:05
Veja que:

[tex3]x^{4}+\frac{1}{x^{4}}=-1[/tex3]
[tex3](x^{4}+\frac{1}{x^{4}})\cdot (x^{2}+\frac{1}{x^{2}})=-1\cdot (x^{2}+\frac{1}{x^{2}})[/tex3]
[tex3]x^{6}+x^{2}+\frac{1}{x^{2}}+\frac{1}{x^{6}}=(-1)\cdot (-1)[/tex3]
[tex3]x^{6}-1+\frac{1}{x^{6}}=1[/tex3]
[tex3]x^{6}+\frac{1}{x^{6}}=2[/tex3]

Logo, não é válido:
jomatlove escreveu:
Qui 21 Dez, 2017 14:20
Assim,concluímos que para todo n natural e par,temos:
[tex3]x^{n}+\frac{1}{x^{n}}=-1[/tex3]
Precipitei-me na conclusão,então o correto é:[tex3]n=2^{k},k\in N[/tex3]
e [tex3]k\geq 2[/tex3]
Valeu pela correção!
:):)

Última edição: jomatlove (Qui 21 Dez, 2017 16:24). Total de 1 vez.


Imagination is more important than
knowledge(Albert Einstein)

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Ensino Fundamental”