Ensino MédioTrigonometria Tópico resolvido

Problemas sobre assuntos estudados no Ensino Médio devem ser postados aqui. Se o problema for de Vestibular, poste-o no fórum Pré-Vestibular

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
Babi123
2 - Nerd
Mensagens: 1141
Registrado em: Sex 28 Jul, 2017 21:05
Última visita: 25-02-21
Jan 2021 21 09:58

Trigonometria

Mensagem não lida por Babi123 »

Calcule o valor da expressão:
[tex3]E=\frac12\arctg\left(\frac{\sqrt[3]{2}+1}{\sqrt{3}}\right)-\frac13\arctg\left(\frac{2\sqrt[3]{2}+1}{3}\right)[/tex3]

[tex3]a) \ \frac{\pi}{6}[/tex3]
[tex3]b) \ \frac{\pi}{12}[/tex3]
[tex3]c) \ \frac{\pi}{36}[/tex3]
[tex3]d) \ \frac{\pi}{3}[/tex3]
[tex3]e) \ \frac{\pi}{4}[/tex3]




Avatar do usuário
NigrumCibum
2 - Nerd
Mensagens: 175
Registrado em: Sáb 31 Out, 2020 16:02
Última visita: 22-02-21
Jan 2021 21 11:18

Re: Trigonometria

Mensagem não lida por NigrumCibum »

No final, o correto seria [tex3]-\frac{1}{3}\arctg(\frac{2\sqrt[3]{2}+1}{\sqrt{3}})[/tex3] que resultaria na letra c, mas ainda não projetei uma ideia de como resolver...

Última edição: NigrumCibum (Qui 21 Jan, 2021 11:19). Total de 1 vez.


Soleil de minuit.

FelipeMartin
2 - Nerd
Mensagens: 478
Registrado em: Sáb 04 Jul, 2020 10:47
Última visita: 25-02-21
Jan 2021 21 11:25

Re: Trigonometria

Mensagem não lida por FelipeMartin »

acho que o primeiro passo é calcular a tangente de [tex3]\frac{\pi}{12}[/tex3] , a terça parte de [tex3]\frac{\pi}4[/tex3]
Última edição: FelipeMartin (Qui 21 Jan, 2021 11:25). Total de 1 vez.


Θα ντυθώ στα λευκά να σ' αγγίξω ξανά φως εσύ και καρδιά μου εγώ πόσο σ' αγαπώ.

Avatar do usuário
Ittalo25
5 - Mestre
Mensagens: 2239
Registrado em: Seg 18 Nov, 2013 22:11
Última visita: 24-02-21
Jan 2021 21 14:51

Re: Trigonometria

Mensagem não lida por Ittalo25 »

De qualquer forma dá sempre para abrir no braço

[tex3]6E=3\arctg\left(\frac{\sqrt[3]{2}+1}{\sqrt{3}}\right)-2\arctg\left(\frac{2\sqrt[3]{2}+1}{\sqrt{3}}\right)[/tex3]

[tex3]\frac{\sqrt[3]{2}+1}{\sqrt{3}} = x[/tex3]

[tex3]6E=3\arctg(x)-2\arctg(2x-\frac{1}{\sqrt{3}})[/tex3]
[tex3]6E=3\arctg(x)-2\arctg(2x-tg(30^o))[/tex3]
[tex3]tg(6E)=tg(3\arctg(x))-2\arctg(2x-tg(30^o)))[/tex3]
[tex3]tg(6E)= \frac{tg(3\arctg(x))-tg(2\arctg(2x-tg(30^o))}{1+tg(3\arctg(x))\cdot tg(2\arctg(2x-tg(30^o))}[/tex3]
[tex3]tg(6E) = \frac{\frac{3x-x^3}{1-3x^2} - \frac{2\cdot (2x-tg(30^o))}{1-(2x-tg(30^o)^2}}{1+\frac{3x-x^3}{1-3x^2}\cdot \frac{2\cdot (2x-tg(30^o))}{1-(2x-tg(30^o)^2} }[/tex3]
[tex3]tg(6E) = \frac{\frac{3x-x^3}{1-3x^2} - \frac{4x-2tg(30^o)}{1-4x^2+4xtg(30^o)-tg^2(30^o)}}{1+\frac{3x-x^3}{1-3x^2}\cdot \frac{4x-2tg(30^o)}{1-4x^2+4xtg(30^o)-tg^2(30^o)} }[/tex3]
[tex3]tg(6E) = \frac{\frac{3x-x^3}{1-3x^2} - \frac{6x-\sqrt{3}}{1-6x^2+2x\sqrt{3}}}{1+\frac{3x-x^3}{1-3x^2}\cdot \frac{6x-\sqrt{3}}{1-6x^2+2x\sqrt{3}} }[/tex3]
[tex3]tg(6E) = \frac{1}{\sqrt{3}}[/tex3]
[tex3]E = 5^o [/tex3]


Ninguém pode ser perfeito, mas todos podem ser melhores. [\Bob Esponja]

Avatar do usuário
snooplammer
4 - Sabe Tudo
Mensagens: 1651
Registrado em: Seg 24 Out, 2016 14:18
Última visita: 25-02-21
Jan 2021 21 19:27

Re: Trigonometria

Mensagem não lida por snooplammer »

Uma outra forma, que dá mais conta(fazendo a substituição que o Italo fez, daria menos conta), mas é que eu acabo sempre usando é

[tex3]E=\frac12\arctg\left(\frac{\sqrt[3]{2}+1}{\sqrt{3}}\right)-\frac13\arctg\left(\frac{2\sqrt[3]{2}+1}{\sqrt 3}\right)[/tex3]

[tex3]6E=3\arctg\(\frac{\sqrt[3]2+1}{\sqrt 3}\)-2\arctg\(\frac{2\sqrt[3]2+1}{\sqrt 3}\)[/tex3]

[tex3]6E=\arctg\(\frac{\sqrt[3]2+1}{\sqrt3}\)+2\arctg\(\frac{\sqrt[3]2+1}{\sqrt3}\)-2\arctg\(\frac{2\sqrt[3]2+1}{\sqrt3}\)[/tex3]

[tex3]6E=\arctg\(\frac{\sqrt[3]2+1}{\sqrt3}\)+2\(\arctg\(\frac{\sqrt[3]2+1}{\sqrt3}\)-\arctg\(\frac{2\sqrt[3]2+1}{\sqrt3}\)\)[/tex3]

Seja [tex3]z := \sqrt3 +i(\sqrt[3]2+1) [/tex3] e [tex3]w := \sqrt3 + i(2\sqrt[3]2+1)[/tex3]

[tex3]\arctg\(\frac{\sqrt[3]2+1}{\sqrt3}\)-\arctg\(\frac{2\sqrt[3]2+1}{\sqrt3}\) = \arg\(\frac{z}{w}\)=\arctg\(\frac{\sqrt[3]2\sqrt3}{-4-3\sqrt[3]2-2\sqrt[3]4}\)[/tex3]

[tex3]6E=\arctg\(\frac{\sqrt[3]2+1}{\sqrt3}\)+2\arctg\(\frac{\sqrt[3]2\sqrt3}{-4-3\sqrt[3]2-2\sqrt[3]4}\)[/tex3]

[tex3]6E=\arctg\(\frac{\sqrt[3]2+1}{\sqrt3}\)+\arctg\(\frac{\sqrt[3]2\sqrt3}{-4-3\sqrt[3]2-2\sqrt[3]4}\) + \arctg\(\frac{\sqrt[3]2\sqrt3}{-4-3\sqrt[3]2-2\sqrt[3]4}\)[/tex3]

Mas, [tex3]\arctg\(\frac{\sqrt[3]2+1}{\sqrt3}\)+\arctg\(\frac{\sqrt[3]2\sqrt3}{-4-3\sqrt[3]2-2\sqrt[3]4}\) = \arg(zw) = \arctg\(\frac{2+4\sqrt[3]2-\sqrt[3]4}{\sqrt 3(2+\sqrt[3]4)}\)[/tex3] .

[tex3]6E= \arctg\(\frac{2+4\sqrt[3]2-\sqrt[3]4}{\sqrt 3(2+\sqrt[3]4)}\) + \arctg\(\frac{\sqrt[3]2\sqrt3}{-4-3\sqrt[3]2-2\sqrt[3]4}\)[/tex3]

Mesma técnica, vem que [tex3] \arctg\(\frac{2+4\sqrt[3]2-\sqrt[3]4}{\sqrt 3(2+\sqrt[3]4)}\) + \arctg\(\frac{\sqrt[3]2\sqrt3}{-4-3\sqrt[3]2-2\sqrt[3]4}\) = \arctg \frac{1}{\sqrt 3}[/tex3]

[tex3]6E = \frac{\pi}{6}[/tex3]

[tex3]E = \frac{\pi}{36} \ \blacksquare[/tex3]



Avatar do usuário
csmarcelo
6 - Doutor
Mensagens: 4870
Registrado em: Sex 22 Jun, 2012 22:03
Última visita: 25-02-21
Jan 2021 22 10:05

Re: Trigonometria

Mensagem não lida por csmarcelo »

caju, muito feliz que a opção de agradecimento voltou... :D



Avatar do usuário
Autor do Tópico
Babi123
2 - Nerd
Mensagens: 1141
Registrado em: Sex 28 Jul, 2017 21:05
Última visita: 25-02-21
Jan 2021 22 10:23

Re: Trigonometria

Mensagem não lida por Babi123 »

Obgda Ittalo25, NigrumCibum, FelipeMartin, snooplammer pela colaboração :D:wink:



csmarcelo escreveu:
Sex 22 Jan, 2021 10:05
caju, muito feliz que a opção de agradecimento voltou... :D
vdd csmarcelo, isso é ótimo! :lol:

Última edição: Babi123 (Sáb 23 Jan, 2021 09:07). Total de 1 vez.



Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem (EFOMM) Trigonometria
    por mionsk » » em IME / ITA
    6 Respostas
    1472 Exibições
    Última msg por null
  • Nova mensagem Trigonometria
    por mionsk » » em Pré-Vestibular
    14 Respostas
    769 Exibições
    Última msg por jvmago
  • Nova mensagem Trigonometria
    por Optmistic » » em Ensino Médio
    4 Respostas
    258 Exibições
    Última msg por Optmistic
  • Nova mensagem Trigonometria
    por mlcosta » » em Ensino Médio
    3 Respostas
    477 Exibições
    Última msg por joaopcarv
  • Nova mensagem Trigonometria
    por Marinaprs » » em Pré-Vestibular
    2 Respostas
    97 Exibições
    Última msg por Killin

Voltar para “Ensino Médio”