Ensino Médio(FME) Conjuntos Tópico resolvido

Problemas sobre assuntos estudados no Ensino Médio devem ser postados aqui. Se o problema for de Vestibular, poste-o no fórum Pré-Vestibular

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
Leandrovisk
iniciante
Mensagens: 3
Registrado em: Qua 18 Dez, 2019 14:25
Última visita: 20-01-20
Jan 2020 12 21:01

(FME) Conjuntos

Mensagem não lida por Leandrovisk »

(Livro Fundamentos da Matemática Elementar)
A questão diz para eu determinar se é Verdadeiro ou Falso.

[tex3](A-B)∪(A∩B) = A[/tex3] V ou F?

Ok, sabemos que: [tex3](A-B) = (x|x ∈ A ∧ x ∉ B)[/tex3]
Tambem sabemos que: [tex3](A∩B) = (x|x ∈ A ∧ x ∈ B) [/tex3]
ficando a sentença em expressões = [tex3](x|x ∈ A ∧ x ∉ B) ∪ (x|x ∈ A ∧ x ∈ B)[/tex3]

Verdadeiro ou Falso? Por que?, i need help.

Última edição: caju (Seg 13 Jan, 2020 22:35). Total de 1 vez.
Razão: arrumar título.



Avatar do usuário
deOliveira
5 - Mestre
Mensagens: 561
Registrado em: Qui 31 Ago, 2017 08:06
Última visita: 27-02-20
Localização: São José dos Campos às vezes São Paulo
Agradeceu: 142 vezes
Agradeceram: 323 vezes
Jan 2020 12 21:39

Re: (FME) Conjuntos

Mensagem não lida por deOliveira »

Sejam [tex3]C[/tex3] e [tex3]D[/tex3] dois conjuntos. Temos que [tex3]C=D\iff C\subset D\ e\ D\subset C.[/tex3]

Seja [tex3]x\in((A-B)\cup(A∩B))[/tex3] . Temos então que [tex3]x\in(A-B)[/tex3] ou [tex3]x\in (A\cap B)[/tex3] .
Se [tex3]x\in(A-B)[/tex3] temos que [tex3]x\in A[/tex3]
Se [tex3]x\in (A\cap B)[/tex3] temos que [tex3]x\in A[/tex3]
[tex3]\implies ((A-B)\cup(A∩B))\subset A[/tex3] [tex3](I)[/tex3]

Seja [tex3]x\in A.[/tex3]
Temos que [tex3]x\in B[/tex3] ou [tex3]x\not\in B[/tex3] .
Se [tex3]x\in B[/tex3] temos que [tex3]x\in(A\cap B)\implies x\in((A-B)\cup(A∩B))[/tex3] .
Se [tex3]x\not\in B[/tex3] temos que [tex3]x\in(A-B)\implies x\in((A-B)\cup(A∩B))[/tex3] .
[tex3]\implies A\subset((A-B)\cup(A∩B))[/tex3] [tex3](II)[/tex3]

De [tex3](I)[/tex3] e [tex3](II)[/tex3] temos que:
[tex3](A-B)\cup(A∩B)=A[/tex3]


Espero ter ajudado :).



Jogar Minecraft é melhor do que viver. '-'

Avatar do usuário
jeabud
Elite
Mensagens: 172
Registrado em: Dom 01 Set, 2019 19:06
Última visita: 22-02-20
Agradeceu: 51 vezes
Agradeceram: 12 vezes
Jan 2020 12 23:49

Re: (FME) Conjuntos

Mensagem não lida por jeabud »

Outra maneira!

A - B -> o que tem no conjunto A e n tem no conjunto B, elementos do conjunto A somente...

A interseção B = conjunto Vazio, pois a intersecção pega os elementos comuns, então, nesse caso n teria nenhum elemento em comum...

(A - B) U (A interseção B) = A
A U { } = A

Portanto Verdadeiro..

Não sei se está certo, mas pensei assim...
Última edição: jeabud (Dom 12 Jan, 2020 23:51). Total de 2 vezes.



Avatar do usuário
deOliveira
5 - Mestre
Mensagens: 561
Registrado em: Qui 31 Ago, 2017 08:06
Última visita: 27-02-20
Localização: São José dos Campos às vezes São Paulo
Agradeceu: 142 vezes
Agradeceram: 323 vezes
Jan 2020 13 00:07

Re: (FME) Conjuntos

Mensagem não lida por deOliveira »

jeabud escreveu:
Dom 12 Jan, 2020 23:49
A interseção B = conjunto Vazio
Como você concluiu isso?
Não tem nada que leve até essa conclusão.

E pelo que eu entendi você chegou que (A-B)=A o que só é verdade se a interseção for vazia.


Jogar Minecraft é melhor do que viver. '-'

Avatar do usuário
Autor do Tópico
Leandrovisk
iniciante
Mensagens: 3
Registrado em: Qua 18 Dez, 2019 14:25
Última visita: 20-01-20
Jan 2020 13 00:14

Re: (FME) Conjuntos

Mensagem não lida por Leandrovisk »

deOliveira escreveu:
Dom 12 Jan, 2020 21:39
Sejam [tex3]C[/tex3] e [tex3]D[/tex3] dois conjuntos. Temos que [tex3]C=D\iff C\subset D\ e\ D\subset C.[/tex3]

Seja [tex3]x\in((A-B)\cup(A∩B))[/tex3] . Temos então que [tex3]x\in(A-B)[/tex3] ou [tex3]x\in (A\cap B)[/tex3] .
Se [tex3]x\in(A-B)[/tex3] temos que [tex3]x\in A[/tex3]
Se [tex3]x\in (A\cap B)[/tex3] temos que [tex3]x\in A[/tex3]
[tex3]\implies ((A-B)\cup(A∩B))\subset A[/tex3] [tex3](I)[/tex3]

Seja [tex3]x\in A.[/tex3]
Temos que [tex3]x\in B[/tex3] ou [tex3]x\not\in B[/tex3] .
Se [tex3]x\in B[/tex3] temos que [tex3]x\in(A\cap B)\implies x\in((A-B)\cup(A∩B))[/tex3] .
Se [tex3]x\not\in B[/tex3] temos que [tex3]x\in(A-B)\implies x\in((A-B)\cup(A∩B))[/tex3] .
[tex3]\implies A\subset((A-B)\cup(A∩B))[/tex3] [tex3](II)[/tex3]

De [tex3](I)[/tex3] e [tex3](II)[/tex3] temos que:
[tex3](A-B)\cup(A∩B)=A[/tex3]


Espero ter ajudado :).
Right, vamos analisar por partes, está meio confuso pra mim :/

(I)

(A-B)∪(A∩B)

[x ∈ A ou x ∈ A]



x ∈ A --> 1° Case (A-B) (in A)

x ∈ A --> 2° Case (A∩B) (in A)

==> (A-B)∪(A∩B) ⊂ A
Isso quer dizer que você determinou que um x pertence a (A), certo? ai você analisou os casos que A se encontra (A-B) ou (A∩B)
blz então x pertence a A e isso quer dizer que a expressão é subconjunto de A



(II)

(A-B)∪(A∩B)

[x ∈ B ou x ∉ B]



x ∈ B --> 1° case (A∩B) (in B)

x ∉ B --> 2° case (A-B) (in -B)


Aqui nao entendi direito, você determinou que x pertence a B ai analisou os casos que se encontra em A inter B, depois A - B ( o B negativo), então X pertence a esse B, ou -B, isso eu entendi mas como que isso quer dizer que A ⊂ (A-B)∪(A∩B)?
jeabud escreveu:
Dom 12 Jan, 2020 23:49
Outra maneira!

A - B -> o que tem no conjunto A e n tem no conjunto B, elementos do conjunto A somente...

A interseção B = conjunto Vazio, pois a intersecção pega os elementos comuns, então, nesse caso n teria nenhum elemento em comum...

(A - B) U (A interseção B) = A
A U { } = A

Portanto Verdadeiro..

Não sei se está certo, mas pensei assim...
Também tava com essa conclusão, mas isso só vai valer se B for complementar de A, sacou?
Pois se B tiver apenas 1 elemento que não esteja em comum com A, essa expressão não vale mais
look:
Screen Shot 2020-01-13 at 22.36.39.png
Screen Shot 2020-01-13 at 22.36.39.png (41.63 KiB) Exibido 76 vezes
Última edição: caju (Seg 13 Jan, 2020 22:37). Total de 1 vez.
Razão: retirar imagem de servidores externos.



Avatar do usuário
snooplammer
5 - Mestre
Mensagens: 1533
Registrado em: Seg 24 Out, 2016 14:18
Última visita: 27-02-20
Agradeceu: 279 vezes
Agradeceram: 777 vezes
Jan 2020 13 00:17

Re: (FME) Conjuntos

Mensagem não lida por snooplammer »

[tex3]A-B=A\cap B'[/tex3]

[tex3](A \cap B')\cup(A \cap B)[/tex3]

Distributiva

[tex3](A \cap B'\cup A) \cup (A\cap B' \cup B)=A[/tex3]



Avatar do usuário
deOliveira
5 - Mestre
Mensagens: 561
Registrado em: Qui 31 Ago, 2017 08:06
Última visita: 27-02-20
Localização: São José dos Campos às vezes São Paulo
Agradeceu: 142 vezes
Agradeceram: 323 vezes
Jan 2020 13 00:47

Re: (FME) Conjuntos

Mensagem não lida por deOliveira »

Leandrovisk, eu vou tentar explicar melhor cada passagem.
O que vamos usar são só as definições de interseção, união e diferença de conjuntos.
[tex3]C\cup D=\{x:x\in C\ ou\ x\in D\}[/tex3] e as outras duas você já as escreveu no post.

Pego um elemento [tex3]x[/tex3] arbitrário de [tex3](A-B)\cup(A∩B)[/tex3] , ou seja, [tex3]x\in((A-B)\cup(A∩B))[/tex3] .
A partir daqui eu tenho duas opções para o [tex3]x[/tex3] , [tex3]x\in(A-B)[/tex3] ou [tex3]x\in(A\cap B)[/tex3] .
Vamos analisar cada uma delas.
Se [tex3]x\in(A-B)[/tex3] temos que [tex3]x\in A[/tex3] e [tex3]x\not\in B[/tex3] .
Se [tex3]x\in(A\cap B)[/tex3] temos que [tex3]x\in A[/tex3] e [tex3]\in B[/tex3] .
Perceba que em qualquer um dos casos temos que [tex3]x\in A[/tex3] . Daí como [tex3]x[/tex3] foi escolhido de forma arbitrária temos que todo elemento do conjunto [tex3](A-B)\cup(A∩B)[/tex3] é também um elemento de [tex3]A[/tex3] e portanto podemos concluir que [tex3]((A-B)\cup(A∩B))\subset A[/tex3] .

Agora vamos pegar um elemento [tex3]x[/tex3] arbitrário de [tex3]A[/tex3] , ou seja, [tex3]x\in A[/tex3] .
Para qualquer elemento temos que ele pertence ou não a um conjunto. Então, temos que [tex3]x\in B[/tex3] ou [tex3]x\not\in B[/tex3] .
Vamos analisar o que acontece em cada em dos casos.
Se [tex3]x\in B[/tex3] temos que [tex3]x\in A[/tex3] e [tex3]x\in B[/tex3] o que implica que [tex3]x\in(A\cap B)[/tex3] dessa forma, [tex3]x\in((A-B)\cup(A\cap B))[/tex3]
Se [tex3]x\not\in B[/tex3] temos que [tex3]x[/tex3] está em [tex3]A[/tex3] e não está em [tex3]B[/tex3] então [tex3]x\in(A-B)[/tex3] e portanto [tex3]x\in((A-B)\cup(A\cap B))[/tex3]
Daqui temos que qualquer que seja [tex3]x\in A[/tex3] ele também está em [tex3](A-B)\cup(A\cap B)[/tex3] , ou seja, todo elemento de [tex3]A[/tex3] também é elemento de [tex3](A-B)\cup(A\cap B)[/tex3] .

Espero ter ajudado :).
Se ainda não estiver claro pergunte novamente que tento ajudá-lo.


Jogar Minecraft é melhor do que viver. '-'

Avatar do usuário
ALANSILVA
3 - Destaque
Mensagens: 1278
Registrado em: Sex 26 Jul, 2013 22:59
Última visita: 23-02-20
Localização: Rio de Janeiro-RJ
Agradeceu: 431 vezes
Agradeceram: 161 vezes
Jan 2020 13 00:51

Re: (FME) Conjuntos

Mensagem não lida por ALANSILVA »

deOliveira, Parabéns !!!
Mais explicado do que isso, difícil :lol::lol::lol:
Última edição: ALANSILVA (Seg 13 Jan, 2020 00:52). Total de 1 vez.


No meio da dificuldade se encontra a oportunidade (Albert Einstein)

Loreto
1 - Trainee
Mensagens: 349
Registrado em: Qua 13 Jul, 2011 09:52
Última visita: 23-02-20
Agradeceu: 36 vezes
Agradeceram: 18 vezes
Jan 2020 13 01:12

Re: (FME) Conjuntos

Mensagem não lida por Loreto »

Queremos mostrar que [tex3](A-B)\cup (A\cap B)[/tex3] =[tex3]A[/tex3]
Observe que [tex3](A-B) = A [/tex3]

[tex3](A\cup (A\cap B)[/tex3] = [tex3](A\cup A) \cap (A\cup B) = A\cup (A\cap B)[/tex3] = [tex3]A[/tex3]

Portanto, a afirmação é verdadeira.



Avatar do usuário
deOliveira
5 - Mestre
Mensagens: 561
Registrado em: Qui 31 Ago, 2017 08:06
Última visita: 27-02-20
Localização: São José dos Campos às vezes São Paulo
Agradeceu: 142 vezes
Agradeceram: 323 vezes
Jan 2020 13 01:24

Re: (FME) Conjuntos

Mensagem não lida por deOliveira »

Observe a imagem que o Leandrovisk colocou em sua resposta. (A-B) não é sempre igual a A.
Screen Shot 2020-01-13 at 22.36.39.png
Screen Shot 2020-01-13 at 22.36.39.png (41.63 KiB) Exibido 73 vezes



Jogar Minecraft é melhor do que viver. '-'

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem FME- Conjuntos
    por leomaxwell » Sex 21 Jul, 2017 12:51 » em Ensino Médio
    1 Respostas
    314 Exibições
    Última msg por csmarcelo
    Sex 21 Jul, 2017 19:50
  • Nova mensagem Conjuntos FME
    por MatheusBorges » Ter 22 Ago, 2017 20:06 » em Ensino Médio
    3 Respostas
    404 Exibições
    Última msg por leomaxwell
    Ter 22 Ago, 2017 21:29
  • Nova mensagem Conjuntos FME
    por MatheusBorges » Sex 25 Ago, 2017 02:32 » em Ensino Médio
    1 Respostas
    477 Exibições
    Última msg por fismatpina
    Sex 25 Ago, 2017 02:58
  • Nova mensagem Conjuntos FME
    por MatheusBorges » Sex 25 Ago, 2017 13:15 » em Ensino Médio
    1 Respostas
    255 Exibições
    Última msg por leomaxwell
    Sex 25 Ago, 2017 14:40
  • Nova mensagem FME Conjuntos
    por MatheusBorges » Qui 31 Ago, 2017 20:13 » em Ensino Médio
    5 Respostas
    343 Exibições
    Última msg por Brunoranery
    Qui 31 Ago, 2017 21:52

Voltar para “Ensino Médio”