Ensino MédioCFTMG 2011 - trigonometria circulos Tópico resolvido

Problemas sobre assuntos estudados no Ensino Médio devem ser postados aqui. Se o problema for de Vestibular, poste-o no fórum Pré-Vestibular

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
physicist
Avançado
Mensagens: 101
Registrado em: Qua 28 Fev, 2018 16:01
Última visita: 30-03-19
Jul 2018 21 13:59

CFTMG 2011 - trigonometria circulos

Mensagem não lida por physicist »

alguem consegue explicar essa questao passo a passo ? ja vi essa resolução aqui : (porem nao entendi) alguem consegue explicar de forma simples ? :D
r.png
r.png (12.58 KiB) Exibido 2616 vezes
Na circunferência abaixo, o ponto M representa a imagem de um arco de
medida, em radianos, igual a
a.png
a.png (13.12 KiB) Exibido 2616 vezes
Resposta

resposta letra "A"




Avatar do usuário
csmarcelo
6 - Doutor
Mensagens: 4769
Registrado em: Sex 22 Jun, 2012 22:03
Última visita: 18-01-21
Jul 2018 21 20:07

Re: CFTMG 2011 - trigonometria circulos

Mensagem não lida por csmarcelo »

Ângulos entre zero e [tex3]\frac{\pi}{2}[/tex3] estão no primeiro quadrante.
Entre [tex3]\frac{\pi}{2}[/tex3] e [tex3]\pi[/tex3] estão no segundo quadrante.
Entre [tex3]\pi[/tex3] e [tex3]\frac{2\pi}{3}[/tex3] estão no terceiro quadrante.
Entre [tex3]\frac{3\pi}{2}[/tex3] e [tex3]2\pi[/tex3] estão no quarto quadrante.

Como o comprimento de círculo é de [tex3]2\pi[/tex3] radianos, se você acrescentar uma medida de [tex3]2k\pi,k\in\mathbb{Z}[/tex3] (ou seja, uma medida múltipla de [tex3]2\pi[/tex3] ) a qualquer um dos ângulos acima, você dará [tex3]k[/tex3] voltas completas e, portanto, o ponto que determina esse arco estará na mesma posição da do que determina o arco original.

Imagine uma pista circular com 200 metros de comprimento. Se eu te pedir para correr 200, 400, 600, 800 metros (todos múltiplos de 200), não importa em que local da pista você estava, voltará para o mesmo lugar. Se você estiver à 10 metros de uma barraquinha de sorvete, terminará a corrida novamente à 10 metros da barraquinha.

Pois bem... então, como fazer para saber o quadrante de um ângulo que não está compreendido entre zero e [tex3]2\pi[/tex3] ? Basta você eliminar o número de voltas completas que ele dá, ou seja, quantos [tex3]2\pi[/tex3] s existem nele!

"Ah, mas algumas medidas são negativas!". Essas medidas negativas representam arcos determinados no sentido horário. É como se eu dissesse que, naquela pista circular, você tivesse corrido -20 metros (20 metros para trás), ao invés de 180 metros.

Dito tudo isso, repare no que foi feito. A pessoa transformou a medida de forma a obter o maior múltiplo de [tex3]2\pi[/tex3] possível na primeira parte [tex3]\frac{54\pi}{3}=18\pi[/tex3] , que representa 9 voltas completas, sobrando [tex3]-\frac{2\pi}{3}[/tex3] (menos que uma volta), ou seja, a determinação de um arco de [tex3]-\frac{56\pi}{3}[/tex3] radianos é a mesma da de um arco de [tex3]-\frac{2\pi}{3}[/tex3] radianos.

No entanto, como é mais fácil identificarmos o quadrante com medidas positivas, ele fez a segunda conta. É como se eu tivesse te dito que corri -30 metros na pista e você, como não gosta de correr para trás, calculou o quanto que tinha que correr para frente para chegar onde estou, ou seja, [tex3]200-30=170[/tex3] metros.




Avatar do usuário
Autor do Tópico
physicist
Avançado
Mensagens: 101
Registrado em: Qua 28 Fev, 2018 16:01
Última visita: 30-03-19
Jul 2018 22 10:31

Re: CFTMG 2011 - trigonometria circulos

Mensagem não lida por physicist »

csmarcelo escreveu:
Sáb 21 Jul, 2018 20:07
Ângulos entre zero e [tex3]\frac{\pi}{2}[/tex3] estão no primeiro quadrante.
Entre [tex3]\frac{\pi}{2}[/tex3] e [tex3]\pi[/tex3] estão no segundo quadrante.
Entre [tex3]\pi[/tex3] e [tex3]\frac{2\pi}{3}[/tex3] estão no terceiro quadrante.
Entre [tex3]\frac{3\pi}{2}[/tex3] e [tex3]2\pi[/tex3] estão no quarto quadrante.

Como o comprimento de círculo é de [tex3]2\pi[/tex3] radianos, se você acrescentar uma medida de [tex3]2k\pi,k\in\mathbb{Z}[/tex3] (ou seja, uma medida múltipla de [tex3]2\pi[/tex3] ) a qualquer um dos ângulos acima, você dará [tex3]k[/tex3] voltas completas e, portanto, o ponto que determina esse arco estará na mesma posição da do que determina o arco original.

Imagine uma pista circular com 200 metros de comprimento. Se eu te pedir para correr 200, 400, 600, 800 metros (todos múltiplos de 200), não importa em que local da pista você estava, voltará para o mesmo lugar. Se você estiver à 10 metros de uma barraquinha de sorvete, terminará a corrida novamente à 10 metros da barraquinha.

Pois bem... então, como fazer para saber o quadrante de um ângulo que não está compreendido entre zero e [tex3]2\pi[/tex3] ? Basta você eliminar o número de voltas completas que ele dá, ou seja, quantos [tex3]2\pi[/tex3] s existem nele!

"Ah, mas algumas medidas são negativas!". Essas medidas negativas representam arcos determinados no sentido horário. É como se eu dissesse que, naquela pista circular, você tivesse corrido -20 metros (20 metros para trás), ao invés de 180 metros.

Dito tudo isso, repare no que foi feito. A pessoa transformou a medida de forma a obter o maior múltiplo de [tex3]2\pi[/tex3] possível na primeira parte [tex3]\frac{54\pi}{3}=18\pi[/tex3] , que representa 9 voltas completas, sobrando [tex3]-\frac{2\pi}{3}[/tex3] (menos que uma volta), ou seja, a determinação de um arco de [tex3]-\frac{56\pi}{3}[/tex3] radianos é a mesma da de um arco de [tex3]-\frac{2\pi}{3}[/tex3] radianos.

No entanto, como é mais fácil identificarmos o quadrante com medidas positivas, ele fez a segunda conta. É como se eu tivesse te dito que corri -30 metros na pista e você, como não gosta de correr para trás, calculou o quanto que tinha que correr para frente para chegar onde estou, ou seja, [tex3]200-30=170[/tex3] metros.
Muito boa explicação, muito obrigado :D:P




Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem (CFTMG) Relação base e altura
    por Liliana » » em Pré-Vestibular
    3 Respostas
    1244 Exibições
    Última msg por MatheusBorges
  • Nova mensagem CFTMG 2010 - Eclipse Solar
    por thiaguera » » em Física II
    1 Respostas
    3894 Exibições
    Última msg por vignaite10
  • Nova mensagem (CFTMG) Área
    por thetruthFMA » » em Pré-Vestibular
    2 Respostas
    388 Exibições
    Última msg por LostWalker
  • Nova mensagem (CFTMG) Grandezas proporcionais
    por thetruthFMA » » em Pré-Vestibular
    1 Respostas
    352 Exibições
    Última msg por legislacao
  • Nova mensagem (CFTMG) Semi-circunferência
    por thetruthFMA » » em Pré-Vestibular
    1 Respostas
    791 Exibições
    Última msg por mcarvalho

Voltar para “Ensino Médio”