Ensino MédioÁrea total - Sólido de Revolução Tópico resolvido

Problemas sobre assuntos estudados no Ensino Médio devem ser postados aqui. Se o problema for de Vestibular, poste-o no fórum Pré-Vestibular

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
ismaelmat
Guru
Mensagens: 471
Registrado em: Seg 11 Jul, 2016 11:04
Última visita: 20-09-19
Agradeceu: 309
Agradeceram: 37
Out 2017 10 17:07

Área total - Sólido de Revolução

Mensagem não lida por ismaelmat » Ter 10 Out, 2017 17:07

3.550-Como vimos, um cilindro circular reto também é chamado de cilindro de revolução, pois pode ser obtido pela revolução(rotação) de 360º de um retângulo em torno de um de seus lados. Considere o retângulo ao lado:

Calcule:

a)a área total do cilindro gerado pela revolução desse retângulo em torno do lado AD.

Gabarito:
Resposta

280[tex3]\pi [/tex3] cm 2
b)a área total do cilindro gerado pela revolução desse retângulo em torno do lado AB.

Gabarito:
Resposta

112[tex3]\pi [/tex3] cm2
Anexos
retângulo3.png
retângulo3.png (18.87 KiB) Exibido 566 vezes




Avatar do usuário
Brunoranery
5 - Mestre
Mensagens: 971
Registrado em: Qua 28 Jun, 2017 15:01
Última visita: 17-09-19
Agradeceu: 172
Agradeceram: 785
Out 2017 10 19:19

Re: Área total - Sólido de Revolução

Mensagem não lida por Brunoranery » Ter 10 Out, 2017 19:19

Boa noite Ismael.

a)
Bem, o cilindro rotacionando sobre o eixo AD terá um raio de 10cm e diâmetro de 20cm. Tente imaginar esse retângulo rotacionando.
Logo, teremos um cilindro de altura 4 e raio 10 centímetros.

Agora vamos ao cálculo.

Área da base:
É a área da circunferência = [tex3]\pi [/tex3]
Ab = 100[tex3]\pi [/tex3]
Como temos uma base inferior e outra superior (a tampa)
Ab = 200[tex3]\pi [/tex3] cm²

Área lateral:
A lateral de um cilindro tem como altura a altura do cilindro e tem como base o comprimento da circunferência. Se planificar, verás perfeitamente.

Logo a área lateral será 2[tex3]\pi [/tex3] rh = 2[tex3]\pi [/tex3] x 10 x 4 = 80[tex3]\pi [/tex3] cm²

Área total = 200 + 80 = 280[tex3]\pi [/tex3] cm²

b) Nesse caso o raio é 4 e a altura, 10 centímetros.
Sendo assim:
Ab = [tex3]\pi [/tex3] r² = 16[tex3]\pi [/tex3] cm²
Como são duas bases: 32[tex3]\pi [/tex3] cm²

A área lateral será: 2[tex3]\pi [/tex3] rh = 2[tex3]\pi [/tex3] x 4 x 10 = 80[tex3]\pi [/tex3]

Logo temos 112[tex3]\pi [/tex3] cm² de área total no segundo caso.



Ajudei-te? Confira minhas resoluções no canal: https://www.youtube.com/channel/UCFy9BChtDB9V2GfvtRvWwqw
Projeto Med.

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem Volume e Área - Sólido de Revolução - Cilindro
    por ismaelmat » Qua 11 Out, 2017 15:17 » em Ensino Médio
    1 Respostas
    920 Exibições
    Última msg por Lucabral
    Qua 11 Out, 2017 16:31
  • Nova mensagem Sólido de revolução
    por Ricardo95 » Sáb 16 Set, 2017 21:25 » em Ensino Superior
    3 Respostas
    345 Exibições
    Última msg por jedi
    Dom 17 Set, 2017 11:16
  • Nova mensagem Sólido de revolução
    por Ricardo95 » Ter 19 Set, 2017 16:20 » em Ensino Superior
    1 Respostas
    196 Exibições
    Última msg por Cardoso1979
    Dom 28 Jan, 2018 21:24
  • Nova mensagem Aplic. Integral - Volume do sólido de revolução
    por darkarmer » Qua 15 Nov, 2017 13:17 » em Ensino Superior
    0 Respostas
    521 Exibições
    Última msg por darkarmer
    Qua 15 Nov, 2017 13:17
  • Nova mensagem volume do solido gerado pela revolução de R
    por ADELIA » Qui 07 Dez, 2017 09:22 » em Ensino Superior
    1 Respostas
    1244 Exibições
    Última msg por IgorAM
    Qui 07 Dez, 2017 09:36

Voltar para “Ensino Médio”