Ensino MédioFuncoes - Encontrar formula de acordo com intervalo

Problemas sobre assuntos estudados no Ensino Médio devem ser postados aqui. Se o problema for de Vestibular, poste-o no fórum Pré-Vestibular

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
leonardooliv
iniciante
Mensagens: 1
Registrado em: Qui 22 Jun, 2017 17:07
Última visita: 23-06-17
Agradeceu: 1 vez
Jun 2017 23 09:07

Funcoes - Encontrar formula de acordo com intervalo

Mensagem não lida por leonardooliv »

Bom dia.

Nao sei se publiquei no topico certo. Mas vou tentar explicar a minha dúvida

tenho um serie de valores e, de acordo com a sequencia, gostaria de achar a formula para encontrar outros valores. Vou tentar explicar em um exemplo:

X Y
4 10
6 b
10 360

Para x = 4, y = 10 e para X = 10, y = 360.

Lembrando que se trata de uma sequencia linear, como faço para chegar à formula que ache o valor de b ?

Obrigado desde já




Avatar do usuário
Lonel
2 - Nerd
Mensagens: 105
Registrado em: Sex 09 Jun, 2017 10:02
Última visita: 06-12-18
Agradeceu: 56 vezes
Agradeceram: 86 vezes
Jun 2017 23 09:56

Re: Funcoes - Encontrar formula de acordo com intervalo

Mensagem não lida por Lonel »

Vou escrever uma função de primeiro grau que descreva a sua sequência.

[tex3]y=ax+b[/tex3]

Quando [tex3]x=4\Rightarrow y=10[/tex3] , então:

[tex3]4a+b=10[/tex3]

Analogamente, quando [tex3]x=10\Rightarrow y=360[/tex3] , então:

[tex3]10a+b=360[/tex3]

Agora é só resolver o sistema de equações abaixo:

[tex3]\begin{cases}
4a+b=10 \\
10a+b=360
\end{cases}[/tex3]

Multiplicando a primeira equação por [tex3]-1[/tex3] , e somando esta equação com a segunda, obtemos que:

[tex3]6a=350\Rightarrow a=\frac{175}{3}[/tex3]

Substituindo o valor de [tex3]a[/tex3] em qualquer uma das equações, conseguimos o valor de [tex3]b[/tex3] :

[tex3]4a+b=10[/tex3]
[tex3]\frac{700}{3}+b=10\Rightarrow b=-\frac{670}{3}[/tex3]

Temos então que a função que retorna valores de [tex3]y[/tex3] para quaisquer [tex3]x[/tex3] na sua sequência é [tex3]f(x)=\frac{175x}{3}-\frac{670}{3}[/tex3]

Agora, para achar o valor de [tex3]y[/tex3] para quando [tex3]x=6[/tex3] , é só substituir o valor de [tex3]x[/tex3] em sua [tex3]f(x)[/tex3] :

[tex3]f(6)=\frac{1050}{3}-\frac{670}{3}\Rightarrow f(6)=\frac{380}{3}[/tex3]

Assim, o valor de b na sua sequencia vale [tex3]\frac{380}{3}[/tex3]

Última edição: Lonel (Sex 23 Jun, 2017 09:56). Total de 2 vezes.



Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Ensino Médio”