Página 1 de 1

Logaritmos

Enviado: Sáb 27 Mai, 2017 10:55
por futuromilitar
Provar que:

[tex3]\frac{\log_{a}c\cdot\log_{b}c}{(\log_{ab}c)^2}=\frac{(1+\log_{a}b)^2}{\log_{a}b}[/tex3] , com [tex3]a \cdot b \neq 1[/tex3] .

Re: Logaritmos

Enviado: Sáb 27 Mai, 2017 19:05
por rippertoru
Olá amigo. A solução detalhada foi desenvolvida logo abaixo.

Para provar que [tex3]\frac{log_{a}c\ .\ log_{b}c}{(log_{ab}c)^{2}} = \frac{(1 + log_{a}b)^{2}}{log_{a}b}[/tex3] , faça:

[tex3]x = log_{a}\ c[/tex3]
[tex3]y = log_{b}\ c[/tex3]
[tex3]z = log_{ab}\ c[/tex3]

Isolando [tex3]c[/tex3] temos

[tex3]c = a^{x}[/tex3] (1)
[tex3]c = b^{y}[/tex3] (2)
[tex3]c = (ab)^{z}[/tex3] (3)

Igualando (1) e (3), temos:

[tex3]a^{x} = (ab)^{z}[/tex3] -> Faça o logaritmo na base [tex3]a[/tex3] , nos dois lados:
[tex3]log_{a}\ a^{x} = log_{a} (ab)^{z}[/tex3]
[tex3]x = z(log_{a}ab)[/tex3]
[tex3]x = z(log_{a}\ a + log_{a}\ b)[/tex3]
[tex3]\frac{x}{z} = (log_{a}\ a + log_{a}\ b)[/tex3]
[tex3]\frac{x}{z} = (1 + log_{a}\ b)[/tex3] (4)

Igualando (2) e (3), temos:

[tex3]b^{y} = (ab)^{z}[/tex3] -> Faça o logaritmo na base [tex3]b[/tex3] , nos dois lados:
[tex3]log_{b}\ b^{y} = log_{b} (ab)^{z}[/tex3]
[tex3]y = z(log_{b}ab)[/tex3]
[tex3]y = z(log_{b}\ a + log_{b}\ b)[/tex3]
[tex3]\frac{y}{z} = (1 + log_{b}\ a)[/tex3] (5)

De (4), tem-se

[tex3]\frac{x}{z} = (1 + log_{a}\ b)[/tex3]
[tex3]\frac{log_{a}\ c}{ log_{ab}\ c} = (1 + log_{a}\ b)[/tex3] (6)

De (5), tem-se
[tex3]\frac{log_{b}\ c}{log_{ab}\ c} = (1 + log_{b}\ a)[/tex3] (7)

Voltando ao primeiro termo da equação inicial:

[tex3]\frac{log_{a}c\ .\ log_{b}c}{(log_{ab}c)^{2}} =\frac{log_{a}c\ .\ log_{b}c}{(log_{ab}c)(log_{ab}c)}[/tex3] (8)

Substituindo (6) e (7) em (8), temos

[tex3]\frac{log_{a}c\ .\ log_{b}c}{(log_{ab}c)(log_{ab}c)} = (1 + log_{a}\ b).(1 + log_{b}\ a)[/tex3] (9)

Igualando (1) e (2), temos:
[tex3]a^{x} = b^{y}[/tex3] -> Faça o [tex3]log_{b}[/tex3] , em ambos os termos
[tex3]log_{b}\ a^{x} = y[/tex3]
[tex3]x.log_{b}\ a = y[/tex3]
[tex3]\frac{x}{y} = log_{b}\ a[/tex3] (10)

Dividindo as equações (4) por (5), temos

[tex3]\frac{x}{y} = \frac{(1 + log_{b}\ a)}{(1 + log_{a}\ b)}[/tex3] (11)

Igualando (10) com (11), tem-se

[tex3]log_{b}\ a = \frac{(1 + log_{b}\ a)}{(1 + log_{a}\ b)}[/tex3] (12)

Desenvolvendo (12) e isolando [tex3]log_{b}\ a[/tex3] , temos
[tex3]log_{b}{a} = \frac{1}{log_{a}b}[/tex3] (13)

Substituindo (13) em (9), temos
[tex3](1 + log_{a}\ b).(1 + \frac{1}{log_{a}b})[/tex3]
[tex3]\frac{log_{a}\ b + log_{a}\ b \ . log_{a}\ b + 1 + log_{a}\ b}{log_{a}\ b}[/tex3]
[tex3]\frac{2log_{a}\ b + (log_{a}\ b)^{2} + 1}{log_{a}\ b}[/tex3]

Então:
[tex3]\frac{(1 + log_{a}\ b)^{2}}{log_{a}\ b}[/tex3]

Espero ter ajudado.