DemonstraçõesCircunferências Côngruas Inscritas em um Triângulo Tangentes a uma Ceviana

Fórum de coleânea das melhores demonstrações de teoremas de matemática.
Se você quiser postar uma demonstração, poste no fórum correspondente com o títuo "Demonstração Teorema X" e substitua com o nome do teorema/fórmula que você postou. Somente moderadores poderão mover sua mensagem para este fórum.

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
jvmago
5 - Mestre
Mensagens: 1927
Registrado em: Qui 06 Jul, 2017 14:54
Última visita: 05-12-19
Agradeceu: 504 vezes
Agradeceram: 908 vezes
Mar 2019 01 19:00

Circunferências Côngruas Inscritas em um Triângulo Tangentes a uma Ceviana

Mensagem não lida por jvmago » Sex 01 Mar, 2019 19:00

A um tempo atrás eu prometi a demonstração desse teorema mas no processo acabei descobrindo coisas bem interessantes que compartilharei com os senhores! Peço que compartilhem o máximo pois quase não há informações sobre o que será passado aqui. Vamos começar essa pimbada de geometria!
IMG_20190301_181420575.jpg
IMG_20190301_181420575.jpg (44.25 KiB) Exibido 327 vezes
Pela imagem temos como constantes AB=a, BC=b, AC=c, BD=k e AbC=teta/2

Demonstração 1

Seja [tex3]p[/tex3] , [tex3]p_1[/tex3] e [tex3]p_2[/tex3] os semi-perímetros dos triângulos [tex3]ABC[/tex3] , [tex3]ABD[/tex3] e [tex3]BCD[/tex3] , respectivamente, então valerá a seguinte relação: [tex3]p_1+p_2 = p+ x[/tex3]

[tex3] p_1=\frac{x+b+DC}{2}[/tex3]

[tex3] p_2=\frac{x+a+AD}{2}[/tex3]

Sabendo-se que [tex3]AD+DC=c [/tex3] e somando as duas, demonstramos a primeira relação

[tex3] p_1+p_2=p+x [/tex3]
Que será o nosso Eureka para vislumbrar as próximo duas

Demonstração 2

[tex3] k=\sqrt{p(p-c)} [/tex3]

Primeiramente trace as perpendicular cujos pés são M,N,P e L como no desenho

Repare que [tex3] AN=p_1-x[/tex3] e que [tex3] AM=p-x [/tex3]

Por semelhança temos:

[tex3] \frac{r}{R} =\frac{p_1-x}{p-b}[/tex3] tal que

[tex3] r(p-b)=R(p_1-x)[/tex3]

Repare agora que [tex3]PC=p-a [/tex3] e [tex3] LC=p_2-x [/tex3]

De novo por semelhança:

[tex3] \frac{r}{R} =\frac{p_2-x}{p-a} [/tex3]

Tal que [tex3] r(p-a)=R(p_2-x) [/tex3]

Somando as duas equações chegamos em uma coisa muito legal

[tex3]r(2p-a-b)= R(p_1+p_2-2x) [/tex3]

Simplificando chegamos em

[tex3]r\cdot c=R(p-x) [/tex3] vamos guardar isso !!

Vale lembrar que [tex3] p\cdot R=r(p_1+p_2) [/tex3] relação das áreas

Mas [tex3] (p_1+p_2)=p+x[/tex3] substituindo na equação anterior chegamos em [tex3] r=\frac{Rp}{p+x} [/tex3] substituindo na anterior provamos nossa tese 2

Demonstração 3 [tex3]S=k^2 \tg\(\frac{AbC}{2}\)[/tex3]

Como [tex3] k^2=p(p-c) [/tex3]

Temos pelo teorema das tangentes que[tex3] (p-c)=R\cdot\cotg\(\frac{AbC}{2}\)[/tex3] então [tex3] k^2=p\cdot R\cdot \cotg [/tex3] mas pR=S e daí provamos nossa terceira tese!

PS: vão se danar sangakus!!!

Última edição: caju (Sex 01 Mar, 2019 20:12). Total de 6 vezes.
Razão: arrumar tex.


Não importa se você é magrinho ou gordinho, alto ou baixo, o que te difere dos outros é quando expõe seus conhecimentos.

Avatar do usuário
Autor do Tópico
jvmago
5 - Mestre
Mensagens: 1927
Registrado em: Qui 06 Jul, 2017 14:54
Última visita: 05-12-19
Agradeceu: 504 vezes
Agradeceram: 908 vezes
Mar 2019 01 19:13

Re: Circunferências Côngruas Inscritas em um Triângulo Tangentes a uma Ceviana

Mensagem não lida por jvmago » Sex 01 Mar, 2019 19:13

Agora está arrumado e legível



Não importa se você é magrinho ou gordinho, alto ou baixo, o que te difere dos outros é quando expõe seus conhecimentos.

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Demonstrações”