OlimpíadasInequação Tópico resolvido

Aqui devem ser postados problemas Olímpicos. Informe a olimpíada e o ano no título do tópico. Exemplo: (OBM - 2008).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
triplebig
4 - Sabe Tudo
Mensagens: 1225
Registrado em: Ter 18 Set, 2007 23:11
Última visita: 31-03-19
Localização: São José dos Campos
Agradeceu: 2
Agradeceram: 58
Fev 2009 20 01:49

Inequação

Mensagem não lida por triplebig » Sex 20 Fev, 2009 01:49

Sejam a,b,c>0 com a+b+c=1 . Mostre que

\frac{a^2+b}{b+c}+\frac{b^2+c}{c+a}+\frac{c^2+a}{a+b}\geq2

Última edição: triplebig (Sex 20 Fev, 2009 01:49). Total de 1 vez.



Beastie
1 - Trainee
Mensagens: 38
Registrado em: Seg 09 Jun, 2008 22:40
Última visita: 28-10-09
Fev 2009 20 11:06

Re: Inequação

Mensagem não lida por Beastie » Sex 20 Fev, 2009 11:06

Por \text{MA}\geq\,\text{MG}, \frac{a+b}{b+c}+\frac{b+c}{c+a}+\frac{a+c}{a+b}\geq\,3\sqrt[3]{\frac{a+b}{b+c}\cdot\,\frac{b+c}{c+a}\cdot\,\frac{a+c}{a+b}}=3 \text{(*)} .

Desenvolvendo \text{(*)}, sabendo que a+b+c=1 :

\frac{a+b}{b+c}+\frac{b+c}{c+a}+\frac{a+c}{a+b}=\frac{1-c}{b+c}+\frac{1-a}{c+a}+\frac{1-b}{a +b}\geq\,3

\Rightarrow\,-1+\frac{1-c}{b+c}+\frac{1-a}{c+a}+\frac{1-b}{a +b}\geq\,3-1=2

\Rightarrow\,(-a-b-c)+\frac{1-c}{b+c}+\frac{1-a}{c+a}+\frac{1-b}{a +b}\geq\,2

\Rightarrow\,(-a+\frac{1-c}{b+c})+(-b+\frac{1-a}{c+a})+(-c+\frac{1-b}{a +b})\geq\,2

\Rightarrow\,\frac{-a(b+c)+1-c}{b+c}+\frac{-b(c+a)+1-a}{c+a}+\frac{-c(a+b)+1-b}{a+b}\geq\,2

\Rightarrow\,\frac{-a(1-a)+1-c}{b+c}+\frac{-b(1-b)+1-a}{c+a}+\frac{-c(1-c)+1-b}{a+b}\geq\,2

\Rightarrow\,\frac{a^2+(1-a-c)}{b+c}+\frac{b^2+(1-a-b)}{c+a}+\frac{c^2+(1-c-b)}{a+b}\geq\,2

\Rightarrow\,\fbox{\frac{a^2+b}{b+c}+\frac{b^2+c}{c+a}+\frac{c^2+a}{a+b}\geq\,2}

Última edição: Beastie (Sex 20 Fev, 2009 11:06). Total de 1 vez.


COMO ESTOU POSTANDO? LIGUE: 0800-2030

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Olimpíadas”