Olimpíadas(Canada 1988) Equações polinomiais Tópico resolvido

Aqui devem ser postados problemas Olímpicos. Informe a olimpíada e o ano no título do tópico. Exemplo: (OBM - 2008).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
Hanon
1 - Trainee
Mensagens: 298
Registrado em: Sáb 13 Mai, 2017 00:28
Última visita: 15-08-18
Localização: São Luis - Ma
Agradeceu: 637
Agradeceram: 88
Jan 2018 02 13:47

(Canada 1988) Equações polinomiais

Mensagem não lida por Hanon » Ter 02 Jan, 2018 13:47

(Canada 1988) Para algum inteiro [tex3]a[/tex3] , as equações [tex3]1988x^2+ax+8891 = 0[/tex3] e [tex3]8891x^2+ax+1988 = 0[/tex3] compartilham uma raiz comum. Encontre o valor de [tex3]a[/tex3] .



OBS: Não tenho gabarito!

Editado pela última vez por Hanon em Ter 02 Jan, 2018 14:02, em um total de 1 vez.



Avatar do usuário
drfritz
2 - Nerd
Mensagens: 69
Registrado em: Seg 18 Dez, 2017 11:14
Última visita: 17-07-18
Agradeceu: 13
Agradeceram: 42
Jan 2018 02 19:12

Re: (Canada 1988) Equações polinomiais

Mensagem não lida por drfritz » Ter 02 Jan, 2018 19:12

Oi, boa noite
Observe que nas duas equações a soma do coeficiente de [tex3]x^{2}[/tex3] e do termo independente são iguais, logo podemos utilizar o seguinte resultado - quando soma dos coeficientes de uma equação polinomial for igual a zero, o número 1 é raiz, assim podemos escrever [tex3]1988+a+8891=0\rightarrow a=-10879[/tex3] , observe que para esse valor de [tex3]a[/tex3] as equações têm uma raiz comum que é o número [tex3]1[/tex3] , [tex3]a\in Z[/tex3] . Espero ter ajudado.




Avatar do usuário
Autor do Tópico
Hanon
1 - Trainee
Mensagens: 298
Registrado em: Sáb 13 Mai, 2017 00:28
Última visita: 15-08-18
Localização: São Luis - Ma
Agradeceu: 637
Agradeceram: 88
Jan 2018 02 22:41

Re: (Canada 1988) Equações polinomiais

Mensagem não lida por Hanon » Ter 02 Jan, 2018 22:41

drfritz, Muito obrigado. Não conhecia este fato:
drfritz escreveu:
Ter 02 Jan, 2018 19:12
quando soma dos coeficientes de uma equação polinomial for igual a zero, o número 1 é raiz
. Apenas sei que se quisermos encontrar a soma dos coeficientes de um polinômio [tex3]p(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_{2}x^{2}+a_{1}x^{1}+a_{0}[/tex3] , basta fazer[tex3]x=1[/tex3] e teremos a soma dos coeficientes. :D



Catador
1 - Trainee
Mensagens: 87
Registrado em: Sáb 08 Fev, 2014 03:33
Última visita: 16-05-18
Agradeceu: 48
Agradeceram: 57
Jan 2018 03 01:01

Re: (Canada 1988) Equações polinomiais

Mensagem não lida por Catador » Qua 03 Jan, 2018 01:01

Hanon, tudo beleza?
Eu vou tentar resolver usando um fato mais básico, no caso dizer que as duas equações possuem raízes em comum é equivalente a dizer que essa solução seria a intersecção de um sistema entre as duas equações:
[tex3]\begin{cases}
1988x^2+ax+8891 = 0(I)\\
8891x^2+ax+1988 = 0 (II)
\end{cases}[/tex3]
Multiplicando I por -1 e somando membro a membro teremos:
[tex3]6903x^{2}-6903=0[/tex3]
[tex3]x^{2}=1[/tex3]
[tex3]x=\pm 1[/tex3]

Substituindo [tex3]x=\pm 1[/tex3] em qualquer uma das duas equações chegamos a conclusão que [tex3]a=\pm 10879[/tex3]

Editado pela última vez por Catador em Qua 03 Jan, 2018 01:11, em um total de 4 vezes.



Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem Canadá 1988 (Equação do 2º)
    por Babi123 » Sex 09 Fev, 2018 00:36 » em Olimpíadas
    1 Respostas
    193 Exibições
    Última msg por Ittalo25
    Sex 09 Fev, 2018 01:17
  • Nova mensagem Equações polinomiais
    por EricaAS » Qua 11 Nov, 2015 20:28 » em Ensino Médio
    1 Respostas
    262 Exibições
    Última msg por VALDECIRTOZZI
    Qui 12 Nov, 2015 08:07
  • Nova mensagem (FCMSC-SP) Equações polinomiais
    por Liliana » Qua 30 Nov, 2016 11:37 » em Pré-Vestibular
    1 Respostas
    317 Exibições
    Última msg por ALEXZOE
    Qua 30 Nov, 2016 19:46
  • Nova mensagem Equações polinomiais ou algébricas
    por Aurelio » Dom 04 Dez, 2016 02:14 » em Ensino Médio
    3 Respostas
    403 Exibições
    Última msg por danjr5
    Dom 04 Dez, 2016 18:33
  • Nova mensagem (UFMG) Equações polinomiais ou algébricas
    por Aurelio » Qui 08 Dez, 2016 01:25 » em Pré-Vestibular
    1 Respostas
    190 Exibições
    Última msg por Ittalo25
    Qui 08 Dez, 2016 02:10

Voltar para “Olimpíadas”