OlimpíadasProgressão Geométrica e Misturas Homogêneas Tópico resolvido

Aqui devem ser postados problemas Olímpicos. Informe a olimpíada e o ano no título do tópico. Exemplo: (OBM - 2008).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
rean
Imperial
Mensagens: 644
Registrado em: Seg 26 Mar, 2007 10:31
Última visita: 27-10-22
Localização: Recife
Contato:
Out 2007 26 09:48

Progressão Geométrica e Misturas Homogêneas

Mensagem não lida por rean »

Um garrafão contém [tex3]p[/tex3] litros de vinho. Retirando um litro de vinho do garrafão e acrecentando um litro de água, obtemos uma mistura homogênea. Retira-se a seguir, um litro da mistura e acrescenta-se um litro de água e assim sucessivamente. Qual a quantidade de vinho que restará no garrafão após [tex3]n[/tex3] dessas operações?

Última edição: caju (Sáb 28 Mar, 2020 16:12). Total de 2 vezes.
Razão: tex --> tex3



Avatar do usuário
Diego996
Pleno
Mensagens: 61
Registrado em: Qua 13 Jun, 2007 16:34
Última visita: 22-01-08
Out 2007 31 14:31

Re: Progressão Geométrica e Misturas Homogêneas

Mensagem não lida por Diego996 »

Olá Rean, vamos resolver essa questão por recursão.

Considere a tabela abaixo que indica a quantia de água nas três primeiras operações, bem como as quantias de vinho e a porcentagem de água.
  • [tex3]\begin{array}{c|c|c|c}\hline \text{ }n\text{ } &\text{vinho} &\text{água} & \text{água (%)}\\

    \hline 1 & p-1 & 1 & \frac{1}{p}\\
    \hline 2 & p -\left( 2 - \frac{1}{p} \right)=p+\frac{1}{p}-2 & 1-\frac{1}{p}\cdot 1+ 1=2-\frac{1}{p} & \frac{2-\frac{1}{p}}{p}\\
    \hline 3 & & 2-\frac{1}{p}-\left(\frac{2-\frac{1}{p}}{p}\right)\cdot 1 +1 &\\
    \hline
    \end{array}[/tex3]
Dessa forma, fica evidente que considerando que a quantia de água pode ser expressa numa sequência tal que:
  • [tex3]a_{n + 1} = a_n - \frac{{a_n }}{p} + 1 \Rightarrow a_{n + 1} = \left( {1 - \frac{1}{p}} \right)a_n + 1[/tex3]
Seja [tex3]\left\{ {b_n } \right\}[/tex3] a progressão de subtração de primeira ordem de [tex3]\left\{ {a_n } \right\}.[/tex3]

Sabemos que:
  • [tex3]\left\{ \begin{array}{l}
    a_{n + 1} = \left( {1 - \frac{1}{p}} \right)a_n + 1\text{ }(i) \\
    a_{n + 2} = \left( {1 - \frac{1}{p}} \right)a_{n + 1} + 1\text{ }(ii) \\
    \end{array} \right.[/tex3]
De [tex3](ii)-(i):[/tex3]
  • [tex3]\begin{array}{l}
    a_{n + 2} - a_{n + 1} = \left( {1 - \frac{1}{p}} \right)(a_{n + 1} - a_n ) \\
    b_{n + 1} = \left( {1 - \frac{1}{p}} \right)b_n \text{ }(iii) \\
    \end{array}[/tex3]
De [tex3](iii),[/tex3] conclui-se que [tex3]\left\{ {b_n } \right\}[/tex3] é uma PG de razão [tex3]q = 1 - \frac{1}{p},[/tex3] e sabemos que [tex3]b_1 = a_2 - a_1 = 2 - \frac{1}{p} - 1 = 1 - \frac{1}{p}[/tex3] .
Logo, o termo geral é:
  • [tex3]b_n = b_1 \cdot q^{n - 1} = \left( {1 - \frac{1}{p}} \right) \cdot \left( {1 - \frac{1}{p}} \right)^{n - 1}[/tex3]
O termo geral de [tex3]\left\{ {a_n } \right\}[/tex3] é dado por:
  • [tex3]a_n = a_1 + \sum\limits_{k = 1}^{n - 1} {b_k } = 1 + \frac{{\left( {1 - \frac{1}{p}} \right) \cdot \left[ {\left( {1 - \frac{1}{p}} \right)^{n - 1} - 1} \right]}}{{1 - \frac{1}{p} - 1}}[/tex3]

    [tex3]\text{ }= 1 + \frac{{\left( {\frac{{p - 1}}{p}} \right) \cdot \left[ {\left( {1 - \frac{1}{p}} \right)^{n - 1} - 1} \right]}}{{ - \frac{1}{p}}}[/tex3]

    [tex3]\text{ }=1 + (1 - p) \cdot \left[ {\left( {1 - \frac{1}{p}} \right)^{n - 1} - 1} \right][/tex3]

    [tex3]\text{ }= (1 - p) \cdot \left( {1 - \frac{1}{p}} \right)^{n - 1} + p[/tex3]
Logo, a quantia de água em função de n operações é dada por:
  • [tex3]a_n = (1 - p) \cdot \left( {1 - \frac{1}{p}} \right)^{n - 1} + p[/tex3]
Obs.: O [tex3]\sum\limits_{k = 1}^{n - 1} {b_k }[/tex3] nada mais é do que a soma dos [tex3]n - 1[/tex3] primeiros termos da progressão [tex3]\left\{ {b_n } \right\},[/tex3] podendo-se utilizar a fórmula da soma dos [tex3]n[/tex3] primeiros termos de uma PG, dada por: [tex3]S_n = \frac{{a_1 \cdot (q^n - 1)}}{{q - 1}}[/tex3]

Além disso, estou considerando que [tex3]p > 1,[/tex3] pois se isto não fosse satisfeito, todo o vinho seria retirado na primeira operação e, assim apenas teríamos água.

Última edição: caju (Sáb 28 Mar, 2020 16:13). Total de 2 vezes.
Razão: tex --> tex3



Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem Progressão Geométrica
    por Gabi123 » » em Pré-Vestibular
    0 Respostas
    668 Exibições
    Última msg por Gabi123
  • Nova mensagem Progressão Geométrica
    por Fibonacci13 » » em Pré-Vestibular
    1 Respostas
    569 Exibições
    Última msg por NathanMoreira
  • Nova mensagem Progressão Geométrica
    por Fibonacci13 » » em Pré-Vestibular
    1 Respostas
    489 Exibições
    Última msg por JohnnyEN
  • Nova mensagem Progressão geométrica
    por wilney » » em Pré-Vestibular
    1 Respostas
    400 Exibições
    Última msg por Daleth
  • Nova mensagem Progressão Geométrica
    por HenryInfa » » em Ensino Médio
    1 Respostas
    278 Exibições
    Última msg por petras

Voltar para “Olimpíadas”