IME / ITA(ITA-2005) Função

Aqui deverão ser postadas questões desses vestibulares e de outras instituições militares (EN, CN, EsPCEx etc.).

Moderador: [ Moderadores TTB ]

Autor do Tópico
Auto Excluído (ID:20808)
6 - Doutor
Última visita: 31-12-69
Mai 2018 30 11:47

(ITA-2005) Função

Mensagem não lida por Auto Excluído (ID:20808) »

Considere a equação em [tex3]x ∈ \mathbb{R} \ \ \ \sqrt{1+mx}=x+\sqrt{1-mx} [/tex3] , sendo [tex3]m[/tex3] um parâmetro real.

a) Resolva a equação em função do parâmetro [tex3]m[/tex3] .

b) Determine todos os valores de [tex3]m[/tex3] para os quais a equação admite solução não nula.
Resposta

a) V = {[tex3]0[/tex3] }, para [tex3]m ∈ \mathbb{R}[/tex3] tal que [tex3]m <\frac{\sqrt{2}}{2}[/tex3] ou [tex3]m ≥ 1[/tex3]

[tex3]V =[/tex3] {[tex3]0; \ 2\sqrt{1-m^2};-2\sqrt{1-m^2}[/tex3] } para [tex3]m ∈ \mathbb{R}[/tex3] tal que [tex3]\frac{\sqrt{2}}{2}≤ m < 1[/tex3]

b) A equação admite solução não nula se, e somente se, [tex3]m ∈ \mathbb{R}[/tex3] tal que [tex3]\frac{\sqrt{2}}{2}≤ m < 1[/tex3]
Quero que resolvam bem detalhadamente, vi várias resoluções não entendi 100% nenhuma. Desde já obrigado!

Última edição: Auto Excluído (ID:20808) (Qua 30 Mai, 2018 11:54). Total de 2 vezes.



Avatar do usuário
undefinied3
5 - Mestre
Mensagens: 1398
Registrado em: Dom 02 Ago, 2015 13:51
Última visita: 04-07-20
Mai 2018 30 21:47

Re: (ITA-2005) Função

Mensagem não lida por undefinied3 »

[tex3]\sqrt{1+mx}-\sqrt{1-mx}=x \rightarrow \frac{1+mx-1+mx}{\sqrt{1+mx}+\sqrt{1-mx}}=x \rightarrow 2mx=x(\sqrt{1+mx}+\sqrt{1-mx})[/tex3]
Aqui só foi usado que [tex3]a^2-b^2=(a+b)(a-b) \rightarrow a-b=\frac{a^2-b^2}{a+b}[/tex3]
[tex3]x(2m-\sqrt{1+mx}-\sqrt{1-mx})=0[/tex3]
[tex3]2m=\sqrt{1+mx}+\sqrt{1-mx} \rightarrow 4m^2=1+mx+1-mx+2\sqrt{1-m^2x^2}[/tex3] Observe que [tex3]m>0[/tex3] pois é a soma de raízes quadradas.
[tex3]2m^2=1+\sqrt{1-m^2x^2} \rightarrow 4m^4-4m^2+1=1-m^2x^2 \rightarrow x^2=4-4m^2[/tex3] , se [tex3]m \neq 0[/tex3] . Para [tex3]m=0[/tex3] , devemos ter [tex3]x=0[/tex3] , basta substituir na equação inicial
[tex3]x=\pm \sqrt{4-4m^2}=\pm2\sqrt{1-m^2}[/tex3] , então [tex3]-1\leq m \leq 1[/tex3] , de modo que [tex3]0< m\leq 1[/tex3]
Também devemos ter [tex3]1-m^2x^2\geq 0 \rightarrow m^2x^2 \leq 1 \rightarrow m^2(4-4m^2) \leq 1 \rightarrow 4m^4-4m^2+1 \geq 0 \rightarrow (2m^2-1)^2 \geq 0 \rightarrow m \geq \frac{1}{\sqrt{2}}[/tex3] , pois [tex3]m>0[/tex3]

Daí, temos então [tex3]\frac{1}{\sqrt{2}} \leq m \leq 1[/tex3]

Então temos, resumidamente:
a) [tex3]x=0[/tex3] pra qualquer m, ou [tex3]x=\pm 2\sqrt{1-m^2}[/tex3] se [tex3]\frac{1}{\sqrt{2}} \leq m \leq 1[/tex3]
b) As soluções não serão nulas naquele segundo caso, mas devemos desconsiderar m=1, pois, substituindo, vemos que x=0. Então [tex3]\frac{1}{\sqrt{2}}\leq m < 1[/tex3]

Última edição: undefinied3 (Qua 30 Mai, 2018 21:48). Total de 1 vez.


Ocupado com início do ano no ITA. Estarei fortemente inativo nesses primeiros meses do ano, então busquem outro moderador para ajudar caso possível.

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem (Ita 2005) Centro de posição de um sistema
    por Liliana » » em Física I
    4 Respostas
    1243 Exibições
    Última msg por Liliana
  • Nova mensagem (UFMG-2005) Função do 2º grau
    por Liliana » » em Pré-Vestibular
    5 Respostas
    2207 Exibições
    Última msg por Liliana
  • Nova mensagem (FGV-2005) Função Exponencial
    por rumoafa » » em Pré-Vestibular
    3 Respostas
    1212 Exibições
    Última msg por Planck
  • Nova mensagem (CMRJ-2005) Geometria Plana
    por Auto Excluído (ID:17906) » » em IME / ITA
    1 Respostas
    573 Exibições
    Última msg por undefinied3
  • Nova mensagem (Ufscar 2005) Solo da Amazônia
    por amy123369 » » em Reino Vegetal
    6 Respostas
    1835 Exibições
    Última msg por MatheusBorges

Voltar para “IME / ITA”