IME/ITA(EN-2016) Movimento relativo Tópico resolvido

Aqui deverão ser postadas questões desses vestibulares e de outras instituições militares (EN, CN, EsPCEx etc.).

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
ALANSILVA
3 - Destaque
Mensagens: 1266
Registrado em: Sex 26 Jul, 2013 22:59
Última visita: 06-10-19
Localização: Rio de Janeiro-RJ
Agradeceu: 428
Agradeceram: 159
Abr 2019 05 15:10

(EN-2016) Movimento relativo

Mensagem não lida por ALANSILVA » Sex 05 Abr, 2019 15:10

Analise a figura abaixo.
movimento.jpg
movimento.jpg (16.26 KiB) Exibido 1966 vezes
A figura acima ilustra dois blocos de mesmo volume, mas de densidades diferentes, que estão em equilíbrio estático sobre uma plataforma apoiada no ponto A, ponto esse que coincide com o centro de massa da plataforma. Observe que a distância em relação ao ponto A é 3,0cm para o bloco 1, cuja densidade é de l,6g/cm³, e 4,0cm para o bloco 2. Suponha agora que esse sistema seja totalmente imerso em um liquido de densidade l,1g/cm3. Mantendo o bloco 2 na mesma posição em relação ao ponto A, a que distância, em cm, do ponto A deve-se colocar o bloco 1 para que o sistema mantenha o equilíbrio estático?

(A) 3,0
(B) 2,5
C) 1,8
(D) 0,8
(E) 0,5
Resposta

Gabarito: D

Última edição: ALANSILVA (Qui 23 Mar, 2017 20:48). Total de 1 vez.


No meio da dificuldade se encontra a oportunidade (Albert Einstein)

Avatar do usuário
Planck
5 - Mestre
Mensagens: 1197
Registrado em: Sex 15 Fev, 2019 21:59
Última visita: 21-11-19
Agradeceu: 137
Agradeceram: 737
Abr 2019 05 15:50

Re: (EN-2016) Movimento relativo

Mensagem não lida por Planck » Sex 05 Abr, 2019 15:50

Olá ALANSILVA,

Inicialmente, para que o ocorra equilíbrio estático, é necessário que:

[tex3]\sum_{i=1}^{n}\vec M_i=0[/tex3]

Ou seja, o somatório dos momentos precisa ser nulo. O momento de uma força é dado por:

[tex3]\vec M= \vec F \cdot d[/tex3]

Portanto:

[tex3]\sum_{i=1}^{n}\vec F_i \cdot d_i=0[/tex3]

No primeiro caso, temos teremos duas forças para compor a condição de equilíbrio:

[tex3]\vec F_1 \cdot d_1 + \vec F_2 \cdot d_2 =0[/tex3]

Note que trata-se da força peso em cada bloco. Uma no sentido horário e outra no sentido anti-horário. Vamos considerar que o sentido horário é positivo. Com isso:

[tex3]{\color{red}+}\vec F_1 \cdot d_1 {\color{red}-} \vec F_2 \cdot d_2 =0[/tex3]

[tex3]{\color{red}+}m_1 \cdot \vec g \cdot d_1 {\color{red}-} m_2 \cdot \vec g \cdot d_2 =0[/tex3]

[tex3]m_1 \cdot \cancel{\vec g} \cdot d_1 = m_2 \cdot \cancel{\vec g} \cdot d_2 [/tex3]

[tex3]m_1 \cdot d_1 = m_2 \cdot d_2 [/tex3]

Podemos descobrir a densidade do bloco 2. Sabemos que:

[tex3]\mu= \frac{m}{v}[/tex3]

Logo:

[tex3]m_1= \mu_1 \cdot v[/tex3]

[tex3]m_2= \mu_2 \cdot v[/tex3]

Substituindo na relação que encontramos:

[tex3]\mu_1 \cdot \cancel v \cdot d_1 = \mu_2 \cdot \cancel v \cdot d_2 [/tex3]

Considerando [tex3]d_1= 3[/tex3] e [tex3]d_2=4:[/tex3]

[tex3]\mu_1 \cdot 3 = \mu_2 \cdot 4 [/tex3]

[tex3]16 \cdot 10^{-1} \cdot 3 = \mu_2 \cdot 4 [/tex3]

[tex3]\boxed{\mu_2 =12 \cdot 10^{-1}} [/tex3]

Agora, vamos para segunda situação. Com o sistema imerso em um líquido de densidade [tex3]1,1[g/cm^2][/tex3]

[tex3]\sum_{i=1}^{n}\vec M_i=0[/tex3]

[tex3]\vec F_1 \cdot d_1 + \vec E_1 \cdot d_1 + \vec F_2 \cdot d_2 + \vec E_2 \cdot d_2 =0[/tex3]

Note que um empuxo será no sentido anti-horário e outro no sentido horário.

[tex3]m_1 \cdot \vec g \cdot d_1-\mu_l \cdot v \cdot \vec g \cdot d_1 = m_2 \cdot \vec g \cdot d_2 - \mu_l \cdot v \cdot \vec g\cdot d_2 [/tex3]

Podemos fazer a substituição das massa:

[tex3]\mu_1 \cdot v \cdot \vec g \cdot d_1-\mu_l \cdot v \cdot \vec g \cdot d_1 = \mu_2 \cdot v \cdot \vec g \cdot d_2 - \mu_l \cdot v \cdot \vec g\cdot d_2 [/tex3]

Dividindo todos os termos por [tex3]v\cdot \vec g:[/tex3]

[tex3]\mu_1 \cdot d_1-\mu_l \cdot d_1 = \mu_2 \cdot d_2 - \mu_l \cdot d_2 [/tex3]

Colocando as distâncias em evidência:

[tex3]d_1 \cdot (\mu_1 -\mu_l) = d_2 \cdot (\mu_2 - \mu_l) [/tex3]

Substituindo os dados:

[tex3]d_1 \cdot (1,6 -1,1) = 4 \cdot (1,2 -1,1) [/tex3]

[tex3]{\color{orange}\boxed{d_1=0,8[cm]}}[/tex3]

Observação: que questão magnífica!

Última edição: Planck (Sex 05 Abr, 2019 15:51). Total de 1 vez.



Avatar do usuário
Autor do Tópico
ALANSILVA
3 - Destaque
Mensagens: 1266
Registrado em: Sex 26 Jul, 2013 22:59
Última visita: 06-10-19
Localização: Rio de Janeiro-RJ
Agradeceu: 428
Agradeceram: 159
Abr 2019 06 23:06

Re: (EN-2016) Movimento relativo

Mensagem não lida por ALANSILVA » Sáb 06 Abr, 2019 23:06

Planck escreveu:
Sex 05 Abr, 2019 15:50

Note que um empuxo será no sentido anti-horário e outro no sentido horário.

[tex3]m_1 \cdot \vec g \cdot d_1-\mu_l \cdot v \cdot \vec g \cdot d_1 = m_2 \cdot \vec g \cdot d_2 - \mu_l \cdot v \cdot \vec g\cdot d_2 [/tex3]


Qual empuxo vai para o sentido horário e outro que vai para o sentido anti-horário???


No meio da dificuldade se encontra a oportunidade (Albert Einstein)

Avatar do usuário
Planck
5 - Mestre
Mensagens: 1197
Registrado em: Sex 15 Fev, 2019 21:59
Última visita: 21-11-19
Agradeceu: 137
Agradeceram: 737
Abr 2019 07 00:03

Re: (EN-2016) Movimento relativo

Mensagem não lida por Planck » Dom 07 Abr, 2019 00:03

ALANSILVA escreveu:
Sáb 06 Abr, 2019 23:06
Qual empuxo vai para o sentido horário e outro que vai para o sentido anti-horário???
O empuxo no bloco 1 será anti-horário e no bloco 2 será horário.

[tex3]m_1 \cdot \vec g \cdot d_1-\mu_l \cdot v \cdot \vec g \cdot d_1 - m_2 \cdot \vec g \cdot d_2 +\mu_l \cdot v \cdot \vec g\cdot d_2 =0[/tex3]

[tex3]m_1 \cdot \vec g \cdot d_1-\mu_l \cdot v \cdot \vec g \cdot d_1 = m_2 \cdot \vec g \cdot d_2 - \mu_l \cdot v \cdot \vec g\cdot d_2 [/tex3]




Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem (EEAR 2016) Pronome Relativo
    por PedroCosta » Qui 08 Mar, 2018 10:56 » em Gramática
    2 Respostas
    378 Exibições
    Última msg por MatheusBorges
    Sex 09 Mar, 2018 20:17
  • Nova mensagem (Farias Brito) Movimento relativo
    por Gu178 » Qui 02 Mar, 2017 19:40 » em Física I
    3 Respostas
    358 Exibições
    Última msg por miltonsermoud
    Qua 15 Mai, 2019 20:06
  • Nova mensagem Cinemática - Movimento Relativo
    por Teixeirinha » Dom 03 Fev, 2019 03:50 » em Física I
    1 Respostas
    249 Exibições
    Última msg por fernandosant
    Qua 06 Fev, 2019 21:35
  • Nova mensagem Movimento Relativo
    por LeandroSoares » Ter 09 Abr, 2019 18:07 » em Física I
    3 Respostas
    183 Exibições
    Última msg por Planck
    Ter 23 Abr, 2019 12:22
  • Nova mensagem Movimento Relativo
    por snooplammer » Ter 16 Abr, 2019 14:23 » em Física I
    1 Respostas
    67 Exibições
    Última msg por MateusQqMD
    Ter 16 Abr, 2019 14:43

Voltar para “IME/ITA”