Física III(SOIF 2016) Decaimento radioativo Tópico resolvido

Eletricidade e Magnetismo

Moderador: [ Moderadores TTB ]

Avatar do usuário

Autor do Tópico
παθμ
5 - Mestre
Mensagens: 891
Registrado em: 08 Abr 2023, 17:28
Última visita: 30-04-24
Localização: Evanston, IL
Fev 2024 21 17:08

(SOIF 2016) Decaimento radioativo

Mensagem não lida por παθμ »

Materiais radioativos são produzidos com vários propósitos: para estudos de Física Nuclear Básica em laboratórios, para aplicações em indústrias, para análises laboratoriais ou em clínicas médicas e hospitais.

A produção de material radioativo é um setor estratégico de alta tecnologia, que envolve uma reação nuclear e o posterior decaimento:

[tex3] \alpha + A \rightarrow B \rightarrow C [/tex3]

Aqui, [tex3] \alpha [/tex3] é uma partícula que colidirá com um núcleo A, geralmente no seu estado fundamental, gerando um núcleo radiativo B que decairá, com constante de decaimento [tex3] \lambda [/tex3] , em um núcleo C que aqui consideramos ser estável.

a) Mostre que numa amostra do material radioativo B a variação do número desses átomos (número de decaimentos) num intervalo de tempo [tex3] dt [/tex3] suficientemente pequeno quando comparado a [tex3] \lambda [/tex3] é:

[tex3] dN = - \lambda N(t) \; dt,[/tex3]

onde [tex3] N(t) [/tex3] é o número de átomos radioativos na amostra no instante [tex3] t. [/tex3]

b) Mostre que [tex3] N(t) = N_0 \; e^{-\lambda t},[/tex3] , onde [tex3]N_0[/tex3] é o número de átomos do elemento B na amostra no instante inicial.

c) Mostre que o tempo necessário para que a amostra decaia à metade é [tex3] t_{1/2} = \lambda \ln(2).[/tex3]

d) Geralmente, nêutrons produzidos em reatores nucleares são utilizados na produção dos radioisótopos. Nesse caso, [tex3] \alpha = n,[/tex3] um nêutron. Seja [tex3]\varphi [/tex3] a taxa de produção de núcleos B por unidade de tempo após o nêutron ser capturado pelo núcleo A. Para facilitar, vamos considerar que esses nêutrons têm uma energia bem definida. Mostre que a equação que descreve a produção de núcleos B ao longo do tempo é:

[tex3]\frac{dN}{dt}+\lambda N-\varphi = 0.[/tex3]

Assuma que no instante inicial não há nenhum átomo do elemento B na amostra, sendo que esta possui um número suficientemente grande de átomos do elemento A tal que sua varização é desprezível durante o tempo de irradiação.

e) Mostre que

[tex3]N(t)=\frac{\varphi}{\lambda}\left(1-e^{-\lambda t}\right)[/tex3]

é solução da equação do item anterior.

f) Esboce o gráfico [tex3]N(t)[/tex3] versus [tex3]t.[/tex3]

Avatar do usuário

Autor do Tópico
παθμ
5 - Mestre
Mensagens: 891
Registrado em: 08 Abr 2023, 17:28
Última visita: 30-04-24
Localização: Evanston, IL
Fev 2024 21 17:10

Re: (SOIF 2016) Decaimento radioativo

Mensagem não lida por παθμ »

Solução:

a) Durante um intervalo de tempo [tex3]\Delta t,[/tex3] um átomo possui uma certa probabilidade [tex3]p[/tex3] de decair. Como o número de átomos em uma amostra é muito grande, podemos dizer que após o tempo [tex3]\Delta t[/tex3] o número de átomos é, agora, [tex3]N=N_0(1-p),[/tex3] ou seja, [tex3]\Delta N=-p N_0 \Longrightarrow \frac{\Delta N}{\Delta t}=-\frac{p}{\Delta t} N_0.[/tex3] No regime de termos infinitesimais, o termo [tex3]\frac{p}{\Delta t}[/tex3] tende a uma constante, que, por definição, é a constante de decaimento [tex3]\lambda.[/tex3] Então [tex3]\frac{dN}{dt}=- \lambda N \Longrightarrow \boxed{dN = - \lambda N \; dt}[/tex3]

b) [tex3]\int_{N_0}^{N(t)}\frac{dN}{N}=-\lambda \int_{0}^{t}dt \Longrightarrow \ln\left(\frac{N(t)}{N_0}\right)=-\lambda t \Longrightarrow \boxed{N(t) = N_0 e^{-\lambda t}}[/tex3]

c) [tex3]N(t_{1/2})=\frac{N_0}{2} \Longrightarrow e^{-\lambda t_{1/2}}=2^{-1} \Longrightarrow -\lambda t_{1/2}=-\ln(2) \Longrightarrow \boxed{t_{1/2}=\frac{\ln(2)}{\lambda}}[/tex3] (sim, a SBF errou no enunciado.)

d) A diferença é que, ao invés da única contribuição de dN/dt ser o decaimento radioativo, há um termo adicional constante [tex3]\varphi.[/tex3] Então [tex3]\frac{dN}{dt}=- \lambda N+ \varphi \Longrightarrow \frac{dN}{dt}+\lambda N- \varphi= 0.[/tex3]

e) [tex3]dN=(\varphi -\lambda N)dt \Longrightarrow \int_{0}^{N(t)} \frac{dN}{\varphi - \lambda N}=\int_0^{t} dt.[/tex3]

[tex3]u=\varphi - \lambda N \Longrightarrow dN=-\frac{du}{\lambda}.[/tex3]

[tex3]t=-\frac{1}{\lambda}\int_{\varphi}^{\varphi - \lambda N}\frac{du}{u} \Longrightarrow \ln\left(1-\frac{\lambda N}{\varphi}\right)=- \lambda t \Longrightarrow 1- \frac{\lambda N}{\varphi}=e^{-\lambda t} \Longrightarrow \boxed{N=\frac{\varphi}{\lambda}\left(1-e^{-\lambda t}\right)}[/tex3]

f)
4d7ea192-2180-4b9d-ab15-11707ea7bac6.jpg
4d7ea192-2180-4b9d-ab15-11707ea7bac6.jpg (6.34 KiB) Exibido 237 vezes

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem Decaimento Radioativo
    por gabriela12 » » em Física I
    1 Respostas
    954 Exibições
    Última msg por fabit
  • Nova mensagem Decaimento radioativo
    por Liliana » » em Físico-Química
    1 Respostas
    1298 Exibições
    Última msg por Brunoranery
  • Nova mensagem Fuvest-adaptada decaimento radioativo
    por Lars » » em Química Geral
    0 Respostas
    850 Exibições
    Última msg por Lars
  • Nova mensagem (SOIF 2016) Dinâmica de partículas
    por παθμ » » em Física I
    1 Respostas
    165 Exibições
    Última msg por παθμ
  • Nova mensagem (SOIF 2016) Termodinâmica
    por παθμ » » em Física II
    1 Respostas
    225 Exibições
    Última msg por παθμ

Voltar para “Física III”