Pré-VestibularEquação Logarítmica - Mudança de Base A Tópico resolvido

Poste aqui problemas de Vestibulares. Informe a fonte, o ano e o assunto. Exemplo: (FUVEST - 2008) Logaritmos.

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
ismaelmat
Imperial
Mensagens: 510
Registrado em: Seg 11 Jul, 2016 11:04
Última visita: 03-09-20
Fev 2017 25 21:02

Equação Logarítmica - Mudança de Base A

Mensagem não lida por ismaelmat »

37.308-Considerando o universo dos números reais, resolva as equações:

a)log4 (x+2) + log23 = log2 (x[tex3]\sqrt{5}[/tex3] )

Gabarito: S = {3}

Última edição: ismaelmat (Sáb 25 Fev, 2017 21:02). Total de 1 vez.



Avatar do usuário
314159265
3 - Destaque
Mensagens: 384
Registrado em: Qui 23 Fev, 2017 11:48
Última visita: 19-08-20
Fev 2017 25 21:31

Re: Equação Logarítmica - Mudança de Base A

Mensagem não lida por 314159265 »

Qual a dificuldade da questão, amigo?

Você vai substituir o logaritmo de base 4 por um logaritmo de base 2. Vai achar que um [tex3]\log _{4}(x+2) = \log _{2}\sqrt{(x+2)}[/tex3] .

Depois é só utilizar a propriedade de que a soma dos logaritmos é o logaritmo do produto, que vai te deixar com apenas 1 logaritmo de cada lado equação, ambos com a mesma base.

Aí você eleva o número 2 aos logs dos dois lados, cortando os logs.

Depois eleva os dois lados ao quadrado pra tirar a raiz e resolve a equação do segundo grau.

Vai achar 1 raiz negativa (x não pode assumir um valor negativo, pois assim o logaritmando de [tex3]\log _{2}(x\sqrt{5})[/tex3] seria negativo e não tem como eu elevar 2 a algum número e achar um valor negativo) e 1 positiva, que é justamente o 3 que está procurando.

Última edição: 314159265 (Sáb 25 Fev, 2017 21:31). Total de 1 vez.



Avatar do usuário
rodBR
4 - Sabe Tudo
Mensagens: 462
Registrado em: Sáb 28 Jan, 2017 22:37
Última visita: 12-09-20
Fev 2017 25 22:20

Re: Equação Logarítmica - Mudança de Base A

Mensagem não lida por rodBR »

Vou tentar não omitir passagens na resolução...
Para resolver essa equação com logaritmos, lembremos das propriedades:

I) [tex3]\log_{a}b=\frac{\log_{c}b}{\log_{c}a}[/tex3] (Mudança de Base).
II) [tex3]\log_{a}(u\times v)=\log_{a}u+\log_{a}v[/tex3] ("Log de um produto")
III)[tex3]\log_{a}b^{\alpha }=\alpha .\log_{a}b[/tex3]
IV) [tex3]\log_{a}a=1[/tex3]
Primeiramente vamos fazer a mudança de base em [tex3]\log_{4}(x+2)[/tex3] para base [tex3]2[/tex3] .
[tex3]\log_{4}(x+2)\rightarrow \frac{\log_{2}(x+2)}{\log_{2}4}=\frac{\log_{2}(x+2)}{\log_{2}2^{2}}=\frac{\log_{2}(x+2)}{2.\log_{2}2}\therefore \log_{4}(x+2)=\frac{\log_{2}(x+2)}{2}[/tex3]

Agora vamos resolver a equação:
[tex3]\log_{4}(x+2)+\log_{2}3=\log_{2}(x.\sqrt{5})[/tex3]
[tex3]\frac{\log_{2}(x+2)}{2}+\log_{2}3=\log_{2}(x.\sqrt{5})[/tex3] Multiplicando a equação por 2:
[tex3]\log_{2}(x+2)+2.\log_{2}3=2.\log_{2}(x.\sqrt{5})[/tex3] . aplicando as propriedades II e III. resulta em:
[tex3]\log_{2}(9x+18)=\log_{2}(x^{2}.5)[/tex3]
[tex3]3x+6=5x^{2}\therefore 5x^{2}-9x-18=0[/tex3]
[tex3]\Delta =(-3)^{2}-4\times 5\times (-6)\rightarrow \Delta =441[/tex3]

[tex3]x^{'}=\frac{9+\sqrt{441}}{10}=\frac{9+21}{10}\therefore x^{'}=3[/tex3]

O outro valor [tex3]x^{'}=-1,2[/tex3] Não satisfaz a condição de existência para este problema.

Att>> rodBR.

Última edição: rodBR (Sáb 25 Fev, 2017 22:20). Total de 3 vezes.


"Uma vida sem questionamentos não merece ser vivida".

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg

Voltar para “Pré-Vestibular”