Pré-Vestibular(FUVEST - 2000) Probabilidade

Poste aqui problemas de Vestibulares. Informe a fonte, o ano e o assunto. Exemplo: (FUVEST - 2008) Logaritmos.

Moderador: [ Moderadores TTB ]

Avatar do usuário
Autor do Tópico
ruanchaves
sênior
Mensagens: 21
Registrado em: Sáb 20 Ago, 2016 08:56
Última visita: 17-01-17
Agradeceram: 6
Ago 2016 25 11:17

(FUVEST - 2000) Probabilidade

Mensagem não lida por ruanchaves » Qui 25 Ago, 2016 11:17

Um investidor quer aplicar 120 mil reais. Seu corretor lhe oferece um investimento, em duas fases, com as seguintes
regras:

Na 1ª fase do investimento, ocorrerá um dentre os dois eventos seguintes: com probabilidade p, o investidor ganha metade do que investiu; com probabilidade ( p - 1), o investidor perde um terço do que investiu.

Na 2ª fase do investimento, a quantia final da 1ª fase será reinvestida, de forma independente da 1ª fase. Neste novo investimento, ocorrerá um dentre os dois eventos seguintes: com probabilidade 1/2, o investidor ganha a quarta parte do que foi reinvestido; com probabilidade 1/2, o investidor perde metade do que foi reinvestido.

a)
Se o investidor aplicar seu dinheiro desta forma, com que valores pode ficar ao término do investimento? Qual a
probabilidade, em função de p, de ficar com cada um desses valores?

b)
Uma revista especializada informa que, neste investimento, a probabilidade de perder dinheiro é 70%. Admitindo como correta a informação da revista, calcule p.

Não tenho gabarito.

Última edição: ALDRIN (Qui 25 Ago, 2016 14:51). Total de 1 vez.
Razão: Arrumar Título



Avatar do usuário
joaopcarv
3 - Destaque
Mensagens: 359
Registrado em: Ter 18 Out, 2016 21:11
Última visita: 19-09-19
Agradeceu: 534
Agradeceram: 342
Out 2017 13 00:11

Re: (FUVEST - 2000) Probabilidade

Mensagem não lida por joaopcarv » Sex 13 Out, 2017 00:11

No caso, acredito que a outra probabilidade é [tex3](1 \ - \ p)[/tex3] (Teorema do Complementar)

[tex3]a)[/tex3]

Usando uma "árvore de casos" [tex3]\rightarrow[/tex3]

1º caso [tex3]\Rightarrow[/tex3] O investidor ganha no 1º e no 2º investimentos :

Dinheiro total : [tex3]\underbrace{R$ \ 120 \ K}_{dinheiro \ investido} \ + \ \underbrace{R$ \ 120 \ K \ \cdot \ \frac{1}{2}}_{primeiro \ investimento} \ + \ \underbrace{(R$ \ 120 \ K \ + \ \frac{R$ \ 120 \ K}{2}) \ \cdot \ \frac{1}{4}}_{segundo \ investimento} \ = \ \boxed{\boxed{R$ \ 225 \ K}}[/tex3]

A probabilidade para isso é : [tex3]\underbrace{p}_{primeiro \ investimento} \ \cdot \ \underbrace{\frac{1}{2}}_{segundo \ investimento} \ = \boxed{\boxed{\frac{p}{2}}}[/tex3]

2º caso [tex3]\Rightarrow[/tex3] O investidor perde no 1º e no 2º investimentos :

Dinheiro total : [tex3]\underbrace{R$ \ 120 \ K}_{dinheiro \ investido} \ - \ \underbrace{R$ \ 120 \ K \ \cdot \ \frac{1}{3}}_{primeiro \ investimento} \ - \ \underbrace{(R$ \ 120 \ K \ - \ \frac{R$ \ 120 \ K}{3}) \ \cdot \ \frac{1}{2}}_{segundo \ investimento} \ = \ \boxed{\boxed{R$ \ 40 \ K}}[/tex3]

A probabilidade para isso é : [tex3]\underbrace{(1 \ - \ p)}_{primeiro \ investimento} \ \cdot \ \underbrace{\frac{1}{2}}_{segundo \ investimento} \ = \boxed{\boxed{\frac{(1 \ - \ p)}{2}}}[/tex3]

3º caso [tex3]\Rightarrow[/tex3] O investidor ganha no 1º e perde no 2º investimento :

Dinheiro total : [tex3]\underbrace{R$ \ 120 \ K}_{dinheiro \ investido} \ + \ \underbrace{R$ \ 120 \ K \ \cdot \ \frac{1}{2}}_{primeiro \ investimento} \ - \ \underbrace{(R$ \ 120 \ K \ + \ \frac{R$ \ 120 \ K}{2}) \ \cdot \ \frac{1}{2}}_{segundo \ investimento} \ = \ \boxed{\boxed{R$ \ 90 \ K}}[/tex3]

A probabilidade para isso é : [tex3]\underbrace{p}_{primeiro \ investimento} \ \cdot \ \underbrace{\frac{1}{2}}_{segundo \ investimento} \ = \boxed{\boxed{\frac{p}{2}}}[/tex3]

4º caso [tex3]\Rightarrow[/tex3] O investidor perde no 1º e ganha no 2º investimento :

Dinheiro total : [tex3]\underbrace{R$ \ 120 \ K}_{dinheiro \ investido} \ - \ \underbrace{R$ \ 120 \ K \ \cdot \ \frac{1}{3}}_{primeiro \ investimento} \ + \ \underbrace{(R$ \ 120 \ K \ - \ \frac{R$ \ 120 \ K}{3}) \ \cdot \ \frac{1}{4}}_{segundo \ investimento} \ = \ \boxed{\boxed{R$ \ 100 \ K}}[/tex3]

A probabilidade para isso é : [tex3]\underbrace{(1 \ - \ p)}_{primeiro \ investimento} \ \cdot \ \underbrace{\frac{1}{2}}_{segundo \ investimento} \ = \boxed{\boxed{\frac{(1 \ - \ p)}{2}}}[/tex3]

[tex3]b)[/tex3]

Casos em que o investidor perde dinheiro : [tex3]2,3,4[/tex3] .

São casos independentes, cuja soma de probabilidades resulta em [tex3]70\%[/tex3] .

Ok, então, temos [tex3]\rightarrow[/tex3]

[tex3]\underbrace{70\%}_{soma \ de \ probabilidades} \ = \ \underbrace{\frac{(1 \ - \ p)}{2}}_{segundo \ caso} \ + \ \underbrace{\frac{p}{2}}_{terceiro \ caso} \ + \ \underbrace{{\frac{(1 \ - \ p)}{2}}}_{quarto \ caso} \ \rightarrow[/tex3]

[tex3]70\% \ = \ \frac{1 \ \cancel{\ - p} \ \cancel{+ \ p} \ + 1 \ - \ p}{2} \ \rightarrow[/tex3]

[tex3]140\% \ = \ 2 \ - \ p \ \rightarrow[/tex3]

[tex3]140\% \ = \ 200\% \ - \ p \ \rightarrow[/tex3]

[tex3]p \ = \ 200\% \ - \ 140\% \ = \ \boxed{\boxed{p \ = \ 60\%}}[/tex3]



"That's all I'd do all day. I'd just be the catcher in the rye and all."
Poli-USP
04/10/2017 Jn S2

Responder
  • Tópicos Semelhantes
    Respostas
    Exibições
    Última msg
  • Nova mensagem (FUVEST 2000) Gravitação Universal
    por lincoln1000 » Sex 08 Set, 2017 19:11 » em Pré-Vestibular
    2 Respostas
    1583 Exibições
    Última msg por lincoln1000
    Sex 08 Set, 2017 19:45
  • Nova mensagem (FUVEST 2000) Geometria Espacial
    por lincoln1000 » Qui 09 Nov, 2017 01:42 » em Pré-Vestibular
    5 Respostas
    1310 Exibições
    Última msg por joaopcarv
    Qui 09 Nov, 2017 11:56
  • Nova mensagem (FUVEST 2000) Geometria Plana
    por lincoln1000 » Sex 10 Nov, 2017 00:31 » em Pré-Vestibular
    2 Respostas
    967 Exibições
    Última msg por lincoln1000
    Sex 10 Nov, 2017 15:02
  • Nova mensagem FUVEST (2000) - Eletrodinâmica
    por felipef » Sex 17 Nov, 2017 13:18 » em Física III
    1 Respostas
    3722 Exibições
    Última msg por Brunoranery
    Sex 17 Nov, 2017 19:30
  • Nova mensagem FUVEST (2000) - Função
    por felipef » Ter 21 Nov, 2017 18:34 » em Pré-Vestibular
    1 Respostas
    1490 Exibições
    Última msg por MatheusBorges
    Ter 21 Nov, 2017 18:49

Voltar para “Pré-Vestibular”