Funções - Geral, pag. 2
matematica vestibular logo

Matematica | Vestibular

Site oficial do Prof. Caju
aula particular matemática rio de janeiro

 

Início voltar a pagina inicial | Fale Conosco fale conosco | Ajuda ajuda
procura no site
 
solucionador sudoku

Veremos agora a representação das relações entre os números em uma função através de conjuntos.

Vamos utilizar o mesmo exemplo anterior, observe:

Lado Área
2 4
5 25
9 81
12 144
conj1.gif (2612 bytes)

Nesta nova forma de visualizar, temos que cada conjunto representa uma coluna da tabela do exemplo anterior, e as flechas representam a relação A=L².

O conjunto em que as flechas estão saindo pode ser chamado de "conjunto de saída". E o conjunto em que as flechas estão chegando pode ser chamado de "conjunto de chegada".

Vamos fazer um exemplo mais prático, algo que já começa a aparecer em vestibulares:

- Dados os conjuntos A={5, 12, 23} e B={5, 7, 14, 15, 16, 25, 26}, a relação entre eles é expressa pela fórmula y = x + 2 com "x" pertencente ao conjunto A, e "y" pertencente ao conjunto B. Desenhe estas relações em forma de conjuntos:

conj2.gif (2668 bytes)

 

Veja que o relacionamento (a flecha) leva um número do conjunto de saída diretamente ao número duas unidades maior do que ele presente no conjunto de chegada (como manda a lei y=x+2).

Novamente observamos que:
- Todo elemento do conjunto "A" está relacionados a algum elemento do conjunto "B";
- Para cada elemento do conjunto "A" está relacionado somente um elemento do conjunto "B".

A fórmula (y = x + 2) é chamada de função de "A" em "B". E pode-se escrever:

fab.gif (977 bytes)
(é lido como "f é uma função de A em B")

Este é como se fosse uma "assinatura" da função.

Neste exemplo utilizamos "f" como sendo o nome da função, por isso escrevemos fab.gif (977 bytes). Se tivéssemos dado o nome da função de "g", escreveríamos g: A —> B.


Esta foi uma apresentação um tanto quanto intuitiva para as relações.

Para que uma dessas relações entre dois conjuntos possa ser chamada de função, duas regras devem ser observadas (regras vistas intuitivamente nos exemplos acima).

Uma relação de de um conjunto A em um conjunto B será uma função somente se:

Obs1.: Note que a primeira regra não fala nada que não pode ter duas flechas chegando no mesmo elemento do conjunto de chegada. Ou seja, Um elemento do conjunto de chegada pode estar se relacionando com dois elementos do conjunto de saída.

Obs2.: Se uma relação não satisfaz estas duas regras, não será uma função. Será considerada apenas uma relação!


Digamos que temos uma função chamada de "g", que relaciona elementos do conjunto R aos elementos do conjunto N. Dizemos isso matematicamente:

g: R —> N

Cuja lei de associação é y = 2x-1, como "y" é uma variável dependente de "x" também representamos "y" como sendo g(x), leia-se "gê de xis". Ou seja, poderíamos ter escrito:

g(x) = 2x - 1

* Esta representação pode ser utilizada independente do nome da função. Veja mais dois exemplos:

y = x + 3                     h(x) = x + 3
y = 5x - 2                     f(x) = 5x - 2

A lei pode ser escrita de ambas formas, tendo o mesmo significado para Matemática.

Exemplos com soluções:

conj3.gif (3161 bytes)

Este exemplo não é uma função, pois o conjunto "A" tem um elemento sobrando, o que contraria a regra 2.

conj4.gif (3090 bytes)

Este exemplo é uma função, pois atende às exigências de uma função:
- Todos elementos de "A" possuem correspondentes;
- Para cada elemento de "A" é relacionado um e apenas um elemento de "B".

Obs.: Veja que neste exemplo temos duas flechas chegando no elemento 25 do conjunto B, de chegada. Isso não tem problema, pois a regra 1 diz que não pode ter duas flechas no mesmo elemento do conjunto de saída.

Clique no botão continuar e veja mais exemplos resolvidos.

avancar.gif (1126 bytes)

INDIQUE-NOS PARA SEUS AMIGOS
www.TutorBrasil.com.br
Matematica Vestibular