Progressões Aritméticas - Introdução
matematica vestibular logo

Matematica | Vestibular

Site oficial do Prof. Caju
aula particular matemática rio de janeiro

 

Início voltar a pagina inicial | Fale Conosco fale conosco | Ajuda ajuda
procura no site
 
solucionador sudoku

Para entendermos esta matéria, vamos dar uma olhada no sentido do nome "Progressões Aritméticas".

"Progressão" é tudo aquilo que progride, que vai para frente, que muda. Como estamos falando de matemática, certamente será com números. Uma PROGRESSÃO é uma sucessão de números um após o outros (Ex. 1, 1, 2, 3, 5, 8, 13... - ou também, 1, 5, 23, -25, 20, 20, 7,...). Ou seja, quando falamos simplesmente PROGRESSÃO, estamos nos referindo a alguns números colocados um após o outro sem, necessariamente, possuir uma lógica em sua distribuição.

E para ser uma PROGRESSÃO ARITMÉTICA (PA), o que deve acontecer?

Uma progressão aritmética é uma sucessão de números, um após o outro, que seguem um "ritmo definido".

Veja a progressão abaixo:

(1, 3, 5, 7, 9, 11, 13, 15, 17...)

Esta progressão segue um ritmo definido, mostrado na figura abaixo:

intro01.gif (2475 bytes)

Ou seja, temos um ritmo que é o de SOMAR DUAS UNIDADES a cada elemento que acrescentamos. Este é o ritmo que estamos falando, somar sempre o mesmo número a cada elemento acrescentado.

Como ela é uma progressão numérica que segue um "ritmo definido" de acréscimo em relação ao número anterior, ela pode ser classificada como uma PROGRESSÃO ARITMÉTICA CRESCENTE, pois note que sempre irá crescer.

Veja outro exemplo:

(16, 13, 10, 7, 4, 1, -2, -5...)

Esta também pode ser classificada como uma PA, pois segue um ritmo definido. O qual, diferente da anterior, é de decréscimo. Por ser assim, ela é chamada de PROGRESSÃO ARITMÉTICA DECRESCENTE.

Obs.: Só podemos chamar de P.A. se o ritmo que a seqüência seguir for de acréscimo ou de decréscimo. Se tiver um ritmo diferente não será uma PA. Por exemplo, a seqüência (1, 2, 4, 8, 16, ...) tem um ritmo, sempre dobrar o próximo elemento, mas não é uma PA. :)

Vamos fazer um pequeno exercício agora:


Vamos verificar se as progressões abaixo são P.A., quando for diga se é crescente ou decrescente:

(a) (100, 101, 109, 110, 119, 120...)
(b) (10, 20, 30, 40, 50, 60...)
(c) (-15, -10, -5, 0, 5, 10...)

(d) (1, 2, 3, 4, 5, 6, 7, 8, 9, 10...)
(e) (10, 6, 2, -2, -6...)
(f) (16, 25, 36, 43, 52, 61...)

RESPOSTAS:

(a) Não é uma PA, pois do primeiro para o segundo termo houve um acréscimo de 1 unidade, e do segundo para o terceiro houve um acréscimo de 8 unidades. Para ser PA devemos ter o acréscimo sempre constante.
(b) É uma PA, pois o ritmo se manteve constante do início ao fim. Sempre somando 10, ou seja, CRESCENTE.
(c) É uma PA, pois o ritmo de somar 5 manteve-se constante, ou seja, é uma PA CRESCENTE.
(d) PA CRESCENTE
(e) PA DECRESCENTE
(f) NÃO É PA

 

asdf

INDIQUE-NOS PARA SEUS AMIGOS
www.TutorBrasil.com.br
Matematica Vestibular