Logaritmos - Introdução
matematica vestibular logo

Matematica | Vestibular

Site oficial do Prof. Caju
aula particular matemática rio de janeiro

 

Início voltar a pagina inicial | Fale Conosco fale conosco | Ajuda ajuda
procura no site
 
solucionador sudoku

Você deve ter estudado os tópicos "Aritmética Básica" e "Exponenciais" antes de começar por aqui.

Este tópico vem após exponenciais pois é usado como a "volta" da exponencial. Veja só:

Sabemos que 5 elevado à potência 2, resulta 25, agora mudamos o contexto e vou fazer uma pergunta:

- Qual o número (expoente) que devemos elevar o 5 para obtermos 25?

Você deve estar pensando:
-Mas isso eu resolvo com exponenciais!!!

Sim, porque essa é bem fácil, as difíceis não saem tão simples assim. Vamos começar de baixo.

O logaritmo serve para isso!

Esta pergunta poderia ser interpretada matematicamente da seguinte forma:

Onde "x" é o expoente que devemos elevar a base 5 para obtermos 25.

Como sabemos que devemos elevar o 5 ao quadrado (ou seja, à potência 2) para obtermos 25, chegamos à conclusão que o logaritmo de 25 na base 5 é 2:

Cada elemento desta estrutura possui um nome. Vamos ver:

log1.gif (4575 bytes)

No exemplo anterior, , temos então que a base é 5, o logaritmando é 25 e o logaritmo de 25 na base 5 é 2.

Note que, anteriormente, dissemos que "x" é o expoente de "b", e na figura acima está escrito que "x" é o "logaritmo". Isso acontece pois o LOGARITMO É UM EXPOENTE.

Agora, com esta breve introdução, podemos escrever uma primeira definção de logaritmo (hei, ainda não é a oficial, mas é o que temos até agora):

Logaritmo de um número N, na base b, é o número x ao qual devemos elevar a base b para obtermos N.

Esta é a apenas uma definição, você deve ter entendido bem o que está escrito acima dela para ir ao próximo capítulo de estudo.

Veremos quais as condições que a base, o logaritmando e o logaritmo devem satisfazer para termos um logaritmo.

 

asdf

INDIQUE-NOS PARA SEUS AMIGOS
www.TutorBrasil.com.br
Matematica Vestibular